skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cotham, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bioorthogonal reactions are powerful tools for studying and manipulating biological systems, yet achieving precise spatial and temporal control remains a major challenge. Here, we introduce cyclopropanol (CPol) as a compact, energy-loaded warhead that remains inert under physiological conditions and is selectively activated by mild electrochemical stimuli. This strategy generates reactive β-haloketone moieties in situ, enabling dual-function bioconjugation for cellular labeling and proteomic analysis. Upon oxidative ring opening, CPol preferentially modifies carboxylic acid-containing residues, such as glutamate and aspartate, rather than the expected tyrosine or tryptophan. The electrochemical activation of CPol is biocompatible in living systems, enabling direct protein labeling, real-time visualization with a fluorogenic CPol probe, and selective targeting of membrane-associated and cytoplasmic proteins with a choline-derived probe through integration into cellular phosphatidylcholine metabolism. Coupling bioorthogonality with electrochemical control, this approach enables precise protein profiling, live-cell imaging, and broader applications in chemical biology. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026