Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We describe a recommendation system for HydroShare, a platform for scientific water data sharing. We discuss similarities, differences and challenges for implementing recommendation systems for scientific water data sharing. We discuss and analyze the behaviors that scientists exhibit in using HydroShare as documented by users’ activity logs. Unlike entertainment system users, users on HydroShare tend to be task-oriented, where the set of tasks of interest can change over time, and older interests are sometimes no longer relevant. By validating recommendation approaches against user behavior as expressed in activity logs, we conclude that a combination of content-based filtering and a latent Dirichlet allocation (LDA) topic modeling of user behavior—rather than and instead of LDA classification of dataset topics—provides a workable solution for HydroShare and compares this approach to existing recommendation methods.more » « less
- 
            Abstract Reproducibility of research is essential for science. However, in the way modern computational biology research is done, it is easy to lose track of small, but extremely critical, details. Key details, such as the specific version of a software used or iteration of a genome can easily be lost in the shuffle or perhaps not noted at all. Much work is being done on the database and storage side of things, ensuring that there exists a space-to-store experiment-specific details, but current mechanisms for recording details are cumbersome for scientists to use. We propose a new metadata description language, named MEtaData Format for Open Reef Data (MEDFORD), in which scientists can record all details relevant to their research. Being human-readable, easily editable and templatable, MEDFORD serves as a collection point for all notes that a researcher could find relevant to their research, be it for internal use or for future replication. MEDFORD has been applied to coral research, documenting research from RNA-seq analyses to photo collections.more » « less
- 
            Real-time fatigue health monitoring has the potential to serve as a valuable complement to structural health monitoring (SHM) for bridge inspections. SHM is an objective supplement to visual bridge inspections with a minimum interval between bridge inspections at 24 months. SHM can provide quantitative and objective data on a bridge’s fatigue condition for fracture-critical components, of which fatigue is a criterion. Current methods of continuous structural health monitoring for condition assessment are performed by collecting measured bridge response subjected to operational traffic from an array of sensors installed on fracture-critical members of a bridge. The measured responses are used to determine the remaining fatigue life of the bridge—the minimum time before repair. The large amount of data involved in this process complicates the design of a system that will automate the data collection process at a bridge, analyze that data, and display information about bridge health to researchers and engineers. Variations in bridge designs and condition assessment algorithms also necessitate that such a system be modular and adaptable to allow for expansion to additional structures. A new system has been developed that separates bridge SHM from the data storage and communication system. This architecture creates a reliable interface for sending data from one or more bridges to a cloud server where it can be processed using modular algorithms that can be adapted for different use cases. The cloud-based web service and data repository makes bridge structural health data available to researchers at all steps of the process. This system provides significant advantages over previous platforms for structural health monitoring and condition assessment, most notably in the areas of modularity, extensibility, and reliability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
