skip to main content

Search for: All records

Creators/Authors contains: "Couch, Brian A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Instructional reform in STEM aims for the widespread adoption of evidence based instructional practices (EBIPS), practices that implement active learning. Research recognizes that faculty social networks regarding discussion or advice about teaching may matter to such efforts. But teaching is not the only priority for university faculty – meeting research expectations is at least as important and, often, more consequential for tenure and promotion decisions. We see value in understanding how research networks, based on discussion and advice about research matters, relate to teaching networks to see if and how such networks could advance instructional reform efforts. Our research examines data from three departments (biology, chemistry, and geosciences) at three universities that had recently received funding to enhance adoption of EBIPs in STEM fields. We evaluate exponential random graph models of the teaching network and find that (a) the existence of a research tie from one faculty member$$i$$ito another$$j$$jenhances the prospects of a teaching tie from$$i$$ito$$j$$j, but (b) even though faculty highly placed in the teaching network are more likely to be extensive EBIP users, faculty highly placed in the research network are not, dimming prospects for leveraging research networks to advance STEM instructional reforms.

  2. Abstract Background Change strategies may leverage interpersonal relationships and conversations to spread teaching innovations among science faculty. Knowledge sharing refers to the process by which individuals transfer information and thereby spread innovative ideas within an organization. We use knowledge sharing as a lens for identifying factors that encourage productive teaching-related conversations between individuals, characterizing the context and content of these discussions, and understanding how peer interactions may shape instructional practices. In this study, we interview 19 science faculty using innovative teaching practices about the teaching-focused conversations they have with different discussion partners. Results This qualitative study describes characteristics of the relationship between discussion partners, what they discuss with respect to teaching, the amount of help-seeking that occurs, and the perceived impacts of these conversations on their teaching. We highlight the role of office location and course overlap in bringing faculty together and characterize the range of topics they discuss, such as course delivery and teaching strategies. We note the tendency of faculty to seek out partners with relevant expertise and describe how faculty perceive their discussion partners to influence their instructional practices and personal affect. Finally, we elaborate on how these themes vary depending on the relationship between discussion partners.more »Conclusions The knowledge sharing framework provides a useful lens for investigating how various factors affect faculty conversations around teaching. Building on this framework, our results lead us to propose two hypotheses for how to promote sharing teaching knowledge among faculty, thereby identifying productive directions for further systematic inquiry. In particular, we propose that productive teaching conversations might be cultivated by fostering collaborative teaching partnerships and developing departmental structures to facilitate sharing of teaching expertise. We further suggest that social network theories and other examinations of faculty behavior can be useful approaches for researching the mechanisms that drive teaching reform.« less
    Free, publicly-accessible full text available December 1, 2023
  3. Abstract Background

    Many institutional and departmentally focused change efforts have sought to improve teaching in STEM through the promotion of evidence-based instructional practices (EBIPs). Even with these efforts, EBIPs have not become the predominant mode of teaching in many STEM departments. To better understand institutional change efforts and the barriers to EBIP implementation, we developed the Cooperative Adoption Factors Instrument (CAFI) to probe faculty member characteristics beyond demographic attributes at the individual level. The CAFI probes multiple constructs related to institutional change including perceptions of the degree of mutual advantage of taking an action (strategic complements), trust and interconnectedness among colleagues (interdependence), and institutional attitudes toward teaching (climate).

    Results

    From data collected across five STEM fields at three large public research universities, we show that the CAFI has evidence of internal structure validity based on exploratory and confirmatory factor analysis. The scales have low correlations with each other and show significant variation among our sampled universities as demonstrated by ANOVA. We further demonstrate a relationship between the strategic complements and climate factors with EBIP adoption through use of a regression analysis. In addition to these factors, we also find that indegree, a measure of opinion leadership, correlates with EBIP adoption.

    Conclusions

    The CAFImore »uses the CACAO model of change to link the intended outcome of EBIP adoption with perception of EBIPs as mutually reinforcing (strategic complements), perception of faculty having their fates intertwined (interdependence), and perception of institutional readiness for change (climate). Our work has established that the CAFI is sensitive enough to pick up on differences between three relatively similar institutions and captures significant relationships with EBIP adoption. Our results suggest that the CAFI is likely to be a suitable tool to probe institutional change efforts, both for change agents who wish to characterize the local conditions on their respective campuses to support effective planning for a change initiative and for researchers who seek to follow the progression of a change initiative. While these initial findings are very promising, we also recommend that CAFI be administered in different types of institutions to examine the degree to which the observed relationships hold true across contexts.

    « less
  4. Abstract While formative assessments (FAs) can facilitate learning within undergraduate STEM courses, their impact likely depends on many factors, including how instructors implement them, whether students buy-in to them, and how students utilize them. FAs have many different implementation characteristics, including what kinds of questions are asked, whether questions are asked before or after covering the material in class, how feedback is provided, how students are graded, and other logistical considerations. We conducted 38 semi-structured interviews with students from eight undergraduate biology courses to explore how various implementation characteristics of in-class and out-of-class FAs can influence student perceptions and behaviors. We also interviewed course instructors to provide context for understanding student experiences. Using thematic analysis, we outlined various FA implementation characteristics, characterized the range of FA utilization behaviors reported by students, and identified emergent themes regarding the impact of certain implementation characteristics on student buy-in and utilization. Furthermore, we found that implementation characteristics have combined effects on student engagement and that students will tolerate a degree of “acceptable discomfort” with implementation features that contradict their learning preferences. These results can aid instructor reflection and guide future research on the complex connections between activity implementation and student engagement within STEM disciplines.
  5. Long, Tammy (Ed.)
    The General Biology–Measuring Achievement and Progression in Science (GenBio-MAPS) assessment measures student understanding of the Vision and Change core concepts at the beginning, middle, and end of undergraduate biology degree programs. Assessment coordinators typically administer this instrument as a low-stakes assignment for which students receive participation credit. While these conditions can elicit high participation rates, it remains unclear how to best measure and account for potential variation in the amount of effort students give to the assessment. To better understand student test-taking motivation, we analyzed GenBio-MAPS data from more than 8000 students at 20 institutions. While the majority of students give acceptable effort, some students exhibited behaviors associated with low motivation, such as low self-reported effort, short test completion time, and high levels of rapid-selection behavior on test questions. Standard least-squares regression models revealed that students’ self-reported effort predicts their observable time-based behaviors and that these motivation indices predict students’ GenBio-MAPS scores. Furthermore, we observed that test-taking behaviors and performance change as students progress through the assessment. We provide recommendations for identifying and filtering out data from students with low test-taking motivation so that the filtered data set better represents student understanding.
  6. Abstract Background

    The first day of class helps students learn about what to expect from their instructors and courses. Messaging used by instructors, which varies in content and approach on the first day, shapes classroom social dynamics and can affect subsequent learning in a course. Prior work established the non-content Instructor Talk Framework to describe the language that instructors use to create learning environments, but little is known about the extent to which students detect those messages. In this study, we paired first day classroom observation data with results from student surveys to measure how readily students in introductory STEM courses detect non-content Instructor Talk.

    Results

    To learn more about the instructor and student first day experiences, we studied 11 introductory STEM courses at two different institutions. The classroom observation data were used to characterize course structure and use of non-content Instructor Talk. The data revealed that all instructors spent time discussing their instructional practices, building instructor/student relationships, and sharing strategies for success with their students. After class, we surveyed students about the messages their instructors shared during the first day of class and determined that the majority of students from within each course detected messaging that occurred at a higher frequency.more »For lower frequency messaging, we identified nuances in what students detected that may help instructors as they plan their first day of class.

    Conclusions

    For instructors who dedicate the first day of class to establishing positive learning environments, these findings provide support that students are detecting the messages. Additionally, this study highlights the importance of instructors prioritizing the messages they deem most important and giving them adequate attention to more effectively reach students. Setting a positive classroom environment on the first day may lead to long-term impacts on student motivation and course retention. These outcomes are relevant for all students, but in particular for students in introductory STEM courses which are often critical prerequisites for being in a major.

    « less
  7. Programs seeking to transform undergraduate science, technology, engineering, and mathematics courses often strive for participating faculty to share their knowledge of innovative teaching practices with other faculty in their home departments. Here, we provide interview, survey, and social network analyses revealing that faculty who use innovative teaching practices preferentially talk to each other, suggesting that greater steps are needed for information about innovative practices to reach faculty more broadly.
  8. Addressing common student questions in introductory STEM courses early in the term is one way that instructors can ensure that their students have all been presented with information about how to succeed in their courses. However, categorizing student questions and identifying evidence-based resources to address student questions takes time, and instructors may not be able to easily collect and respond to student questions at the beginning of every course. To help faculty effectively anticipate and respond to student questions, we 1) administered surveys in multiple STEM courses to identify common student questions, 2) conducted a qualitative analysis to determine categories of student questions (e.g., what are best practices for studying, how can in- and out-of- course time be effectively used), and 3) collaboratively identified advice on how course instructors can answer these questions. Here, we share tips, evidence-based strategies, and resources from faculty that instructors can use to develop their own responses for students. We hope that educators can use these common student questions as a starting point to proactively address questions throughout the course and that the compiled resources will allow instructors to easily find materials that can be considered for their own courses.
  9. The instructional practices used in introductory college courses often differ dramatically from those used in high school courses, and dissatisfaction with these practices is cited by students as a prominent reason for leaving science, technology, engineering, and mathematics (STEM) majors. To better characterize the transition to college course work, we investigated the extent to which incoming expectations of course activities differ based on student demographic characteristics, as well as how these expectations align with what students will experience. We surveyed more than 1500 undergraduate students in large introductory STEM courses at three research-intensive institutions during the first week of classes about their expectations regarding how class time would be spent in their courses. We found that first-generation and first-semester students predict less lecture than their peers and that class size had the largest effect on student predictions. We also collected classroom observation data from the courses and found that students generally underpredicted the amount of lecture observed in class. This misalignment between student predictions and experiences, especially for first-generation and first-semester college students and students enrolled in large- and medium-size classes, has implications for instructors and universities as they design curricula for introductory STEM courses with explicit retention goals.
  10. Abstract

    Introductory STEM courses represent entry points into a major, and student experiences in these courses can affect both their persistence and success in STEM disciplines. Identifying course-based student concerns may help instructors detect negative perceptions, areas of struggle, and potential barriers to success. Using an open-response survey question, we identified 13 common concerns expressed by students in introductory STEM courses. We converted these student-generated concerns into closed-ended items that were administered at the beginning and middle of the semester to students in 22 introductory STEM course sections across three different institutions. Students were asked to reflect on each item on a scale from very concerned to not concerned. A subset of these concerns was used to create a summary score of course-based concern for each student. Overall levels of student concern decreased from the first week to the middle of the semester; however, this pattern varied across different demographic groups. In particular, when controlling for initial concern and course grades, female students held higher levels of concern than their peers. Since student perceptions can impact their experiences, addressing concerns through communication and instructional practices may improve students’ overall experiences and facilitate their success.