skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Coulon, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polynomial multiplication is a key component in many post-quantum cryptography and homomorphic encryption schemes. One recurring variation, ternary polynomial multiplication over ring Zq/(xn+1) where one input polynomial has ternary coefficients {−1,0,1} and the other has large integer coefficients {0, q−1}, has recently drawn significant attention from various communities. Following this trend, this paper presents a novel SCALable and area-Efficient Systolic (SCALES) accelerator for ternary polynomial multiplication. In total, we have carried out three layers of coherent interdependent efforts. First, we have rigorously derived a novel block-processing strategy and algorithm based on the schoolbook method for polynomial multiplication. Then, we have innovatively implemented the proposed algorithm as the SCALES accelerator with the help of a number of field-programmable gate array (FPGA)-oriented optimization techniques. Lastly, we have conducted a thorough implementation analysis to showcase the efficiency of the proposed accelerator. The comparison demonstrated that the SCALES accelerator has at least 19.0% and 23.8% less equivalent area-time product (eATP) than the state-of-the-art designs. We hope this work can stimulate continued research in the field. 
    more » « less
  2. The recently announced National Institute of Standards and Technology (NIST) Post-quantum cryptography (PQC) third-round standardization process has released its candidates to be standardized and FALCON is one of them. On the other hand, however, very few hardware implementation works for FALCON have been released due to its very complicated computation procedure and intensive complexity. With this background, in this paper, we propose an efficient hardware structure to implement residue numeral system (RNS) decomposition within NTRUSolve (a key arithmetic component for key generation of FALCON). In total, we have proposed three stages of coherent interdependent efforts to finish the proposed work. First, we have identified the necessary algorithmic operation related to RNS decomposition. Then, we have innovatively designed a hardware structure to realize these algorithms. Finally, field-programmable gate array (FPGA)-based implementation has been carried out to verify the superior performance of the proposed hardware structure. For instance, the proposed hardware design involves at least 3.91x faster operational time than the software implementation. To the authors’ best knowledge, this is the first paper about the hardware acceleration of RNS decomposition for FALCON, and we hope the outcome of this work will facilitate the research in this area. 
    more » « less