We present 370 candidate eclipsing binaries (EBs), identified from ∼510,000 short cadence TESS light curves. Our statistical criteria identify 5105 light curves with features consistent with eclipses (∼1% of the initial sample). After visual confirmation of the light curves, we have a final sample of 2288 EB candidates. Among these, we find 370 sources that were not included in the catalog recently published by Prša et al. We publish our full sample of 370 new EB candidates, and statistical features used for their identification, reported per observation sector.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Our view of the variety of stellar structures pervading the local Milky Way has been transformed by the application of clustering algorithms to the Gaia catalog. In particular, several stellar streams have been recently discovered that are comprised of hundreds to thousands of stars and span several hundred parsecs. We analyze one such structure, Theia 456, a low-density stellar stream extending nearly 200 pc and 20° across the sky. By supplementing Gaia astrometric data with spectroscopic metallicities from Large Sky Area Multi-Object Fiber Spectroscopic Telescope and photometric rotation periods from the Zwicky Transient Facility and the Transiting Exoplanet Survey Satellite, we establish Theia 456's radial velocity coherence, and we find strong evidence that members of Theia 456 have a common age (≃175 Myr), common dynamical origin, and formed from chemically homogeneous prestellar material ([Fe/H] = −0.07 dex). Unlike well-known stellar streams in the Milky Way, which are in its halo, Theia 456 is firmly part of the thin disk. If our conclusions about Theia 456 can be applied to even a small fraction of the remaining ≃8300 independent structures in the Theia catalog, such low-density stellar streams may be ubiquitous. We comment on the implications this has for themore »
-
Abstract Very young (
t ≲ 10 Myr) stars possess strong magnetic fields that channel ionized gas from the interiors of their circumstellar disks to the surface of the star. Upon impacting the stellar surface, the shocked gas recombines and emits hydrogen spectral lines. To characterize the density and temperature of the gas within these accretion streams, we measure equivalent widths of Brackett (Br) 11–20 emission lines detected in 1101 APOGEE spectra of 326 likely pre-main-sequence accretors. For sources with multiple observations, we measure median epoch-to-epoch line strength variations of 10% in Br11 and 20% in Br20. We also fit the measured line ratios to predictions of radiative transfer models by Kwan & Fischer. We find characteristic best-fit electron densities ofn e = 1011–1012cm−3, and excitation temperatures that are inversely correlated with electron density (fromT ∼ 5000 K forn e ∼ 1012cm−3toT ∼ 12,500 K atn e ∼ 1011cm−3). These physical parameters are in good agreement with predictions from modeling of accretion streams that account for the hydrodynamics and radiative transfer within the accretion stream. We also present a supplementary catalog of line measurements from 9733 spectra of 4255 Brackett emission-line sources in the APOGEE Data Release 17 data set. -
Abstract X-ray observations of low-mass stars in open clusters are critical to understanding the dependence of magnetic activity on stellar properties and their evolution. Praesepe and the Hyades, two of the nearest, most-studied open clusters, are among the best available laboratories for examining the dependence of magnetic activity on rotation for stars with masses ≲1
M ⊙. We present an updated study of the rotation–X-ray activity relation in the two clusters. We updated membership catalogs that combine pre-Gaia catalogs with new catalogs based on Gaia Data Release 2. The resulting catalogs are the most inclusive ones for both clusters: 1739 Praesepe and 1315 Hyades stars. We collected X-ray detections for cluster members, for which we analyzed, re-analyzed, or collated data from ROSAT, the Chandra X-ray Observatory, the Neil Gehrels Swift Observatory, and XMM-Newton. We have detections for 326 Praesepe and 462 Hyades members, of which 273 and 164, respectively, have rotation periods—an increase of 6× relative to what was previously available. We find that at ≈700 Myr, only M dwarfs remain saturated in X-rays, with only tentative evidence for supersaturation. We also find a tight relation between the Rossby number and fractional X-ray luminosityL X/L bolin unsaturated single members, suggesting a power-law index betweenmore » -
Abstract APOGEE spectra offer ≲1 km s −1 precision in the measurement of stellar radial velocities. This holds even when multiple stars are captured in the same spectrum, as happens most commonly with double-lined spectroscopic binaries (SB2s), although random line-of-sight alignments of unrelated stars can also occur. We develop a code that autonomously identifies SB2s and higher order multiples in the APOGEE spectra, resulting in 7273 candidate SB2s, 813 SB3s, and 19 SB4s. We estimate the mass ratios of binaries, and for a subset of these systems with a sufficient number of measurements we perform a complete orbital fit, confirming that most systems with periods of <10 days have circularized. Overall, we find an SB2 fraction ( F SB2 ) ∼ 3% among main-sequence dwarfs, and that there is not a significant trend in F SB2 with temperature of a star. We are also able to recover a higher F SB2 in sources with lower metallicity, however there are some observational biases. We also examine light curves from TESS to determine which of these spectroscopic binaries are also eclipsing. Such systems, particularly those that are also pre- and post-main sequence, are good candidates for a follow-up analysis to determine their masses andmore »
-
Abstract APOGEE is a high-resolution ( R ∼ 22,000), near-infrared, multi-epoch, spectroscopic survey of the Milky Way. The second generation of the APOGEE project, APOGEE-2, includes an expansion of the survey to the Southern Hemisphere called APOGEE-2S. This expansion enabled APOGEE to perform a fully panoramic mapping of all of the main regions of the Milky Way; in particular, by operating in the H band, APOGEE is uniquely able to probe the dust-hidden inner regions of the Milky Way that are best accessed from the Southern Hemisphere. In this paper we present the targeting strategy of APOGEE-2S, with special attention to documenting modifications to the original, previously published plan. The motivation for these changes is explained as well as an assessment of their effectiveness in achieving their intended scientific objective. In anticipation of this being the last paper detailing APOGEE targeting, we present an accounting of all such information complete through the end of the APOGEE-2S project; this includes several main survey programs dedicated to exploration of major stellar populations and regions of the Milky Way, as well as a full list of programs contributing to the APOGEE database through allocations of observing time by the Chilean National Time Allocationmore »
-
Abstract The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is a dual-hemisphere, near-infrared (NIR), spectroscopic survey with the goal of producing a chemodynamical mapping of the Milky Way. The targeting for APOGEE-2 is complex and has evolved with time. In this paper, we present the updates and additions to the initial targeting strategy for APOGEE-2N presented in Zasowski et al. (2017). These modifications come in two implementation modes: (i) “Ancillary Science Programs” competitively awarded to Sloan Digital Sky Survey IV PIs through proposal calls in 2015 and 2017 for the pursuit of new scientific avenues outside the main survey, and (ii) an effective 1.5 yr expansion of the survey, known as the Bright Time Extension (BTX), made possible through accrued efficiency gains over the first years of the APOGEE-2N project. For the 23 distinct ancillary programs, we provide descriptions of the scientific aims, target selection, and how to identify these targets within the APOGEE-2 sample. The BTX permitted changes to the main survey strategy, the inclusion of new programs in response to scientific discoveries or to exploit major new data sets not available at the outset of the survey design, and expansions of existing programs to enhance their scientificmore »