Quantifying the impact of submarine melting on calving is central to understanding the response of marine‐terminating glaciers to ocean forcing. Modeling and observational studies suggest the potential for submarine melting to amplify calving (the calving multiplier effect), but there is little consensus as to under what conditions this occurs. Here, by viewing a marine‐terminating glacier as an elastic beam, we propose an analytical basis for understanding the presence or absence of the calving multiplier effect. We show that as a terminus becomes undercut it becomes more susceptible to both serac failure (calving only of ice that is undercut, driven by vertical imbalance) and rotational failure (full‐thickness calving of ice behind the grounding line, driven by rotational imbalance). By deriving analytical stress thresholds for these two forms of calving, we suggest that the dominant of the two calving styles is determined principally by the shape of melt‐undercutting. Uniform undercutting extending from the bed to the waterline promotes serac failure and no multiplier effect, while glaciers experiencing linear undercutting that is greatest at the bed and zero at the waterline are more likely to experience rotational failure and a multiplier effect. Our study offers a quantitative framework for understanding where and when the calving multiplier effect occurs, and, therefore, a route to parameterizing the effect in ice sheet‐scale models.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
00000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bassis, J. N. (1)
-
Benn, D. I. (1)
-
Cowton, T. R. (1)
-
Slater, D. A. (1)
-
Todd, J. A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract