Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Townsend, Jeffrey (Ed.)Abstract Self-splicing group I and II introns are selfish genetic elements that are widely yet patchily distributed across the tree of life. Their selfish behavior comes from super-Mendelian inheritance behaviors, collectively called “homing”, which allow them to rapidly spread within populations to the specific genomic sites they home into. Observations of self-splicing intron evolutionary dynamics have led to the formulation of an intron “lifecycle” model where, once fixed in a population, the introns lose selection for homing and undergo an extensive period of degradation until their eventual loss. Here, we find that self-splicing introns are common in the mitochondrial genomes of Epichloë species, endophytic fungi that live in symbioses with grasses. However, these introns show substantial intron presence–absence polymorphism, with our analyses suggesting that these result from a combination of vertical intron inheritance coupled with multiple invasion and loss events over the course of Epichloë evolution. Surprisingly, we find little evidence for the extensive intron degradation expected under the existing intron lifecycle model. Instead, these introns in Epichloë appear to be lost soon after fixation, suggesting that Epichloë self-splicing introns have a different lifecycle. However, rapid intron loss alone cannot explain our results, indicating that additional factors, such as the evolution of homing suppressors, also contribute to Epichloë self-splicing intron dynamics. This work shows that self-splicing introns have more diverse evolutionary dynamics than previously appreciated.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available December 1, 2026
-
Population genetics has been successful at identifying the relationships between human groups and their interconnected histories. However, the link between genetic demography inferred at large scales and the individual human behaviours that ultimately generate that demography is not always clear. While anthropological and historical context are routinely presented as adjuncts in population genetic studies to help describe the past, determining how underlying patterns of human sociocultural behaviour impact genetics still remains challenging. Here, we analyse patterns of genetic variation in village-scale samples from two islands in eastern Indonesia, patrilocal Sumba and a matrilocal region of Timor. Adopting a ‘process modelling’ approach, we iteratively explore combinations of structurally different models as a thinking tool. We find interconnected socio-genetic interactions involving sex-biased migration, lineage-focused founder effects, and on Sumba, heritable social dominance. Strikingly, founder ideology, a cultural model derived from anthropological and archaeological studies at larger regional scales, has both its origins and impact at the scale of villages. Process modelling lets us explore these complex interactions, first by circumventing the complexity of formal inference when studying large datasets with many interacting parts, and then by explicitly testing complex anthropological hypotheses about sociocultural behaviour from a more familiar population genetic standpoint.more » « less
An official website of the United States government
