skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Craft, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ecosystems vary broadly in their responses to disturbance, ranging from highly impacted to resilient or resistant. We conducted a large‐scale analysis of hurricane disturbance effects on coastal marshes by examining 20 years of data from 10 sites covering 100,000 ha at the Georgia Coastal Ecosystems Long‐Term Ecological Research site distributed across gradients of salinity and proximity to the ocean. We analyzed the impacts of Hurricanes Matthew (in 2016) and Irma (in 2017) on marsh biota (plants, crabs, and snails) and physical attributes (erosion, wrack deposition, and sedimentation). We compared these variables prior to the storms (2000–2015) to years with storms (2016, 2017) to those after the storms (2018–2020). Hurricanes generated storm surges that increased water depth and salinity of oligotrophic areas for up to 48 h. Biological variables in the marsh showed few effects of the hurricanes. The only physical variable affected was creek bank slumping; however, slumping had already increased a year before the hurricanes, suggesting that slumping could have a different cause. Thus, our study uncovered only minor, ephemeral impacts on Georgia coastal marshes, highlighting their resistance to hurricane disturbance of the lower magnitude that typically confronts this region of coastline. 
    more » « less
  2. Situated in the transitional zone between non-tidal forests upstream and tidal freshwater marshes downstream, tidal freshwater forests (TFF) occupy a unique and increasingly precarious habitat due to the threat of saltwater intrusion and sea level rise. Salinization causes tree mortality and forest-to-marsh transition, which reduces biodiversity and carbon sequestration. The Altamaha River is the longest undammed river on the United States East Coast and has extensive TFF, but there have been only limited field studies examining TFF along the entire gradient of salinity and flooding. We surveyed thirty-eight forest plots on the Altamaha River along a gradient of tidal influence, and measured tree species composition, diameter, and height. Hierarchical clustering and indicator species analysis were used to identify TFF communities. The relationship of these communities to elevation and river distance was assessed using non-metric multidimensional scaling (NMDS). We identified six significantly different forest communities: Oak/Hornbeam, Water Tupelo, Bald Cypress/Tupelo, Pine, Swamp Tupelo, and Bald Cypress. Both elevation and river distance were significantly correlated with plot species composition (p = 0.001). Plots at the downstream extent of our study area had lower stem density, basal area, and species diversity than those further upstream, suggesting saltwater intrusion. This study demonstrates the importance of and need for thorough and robust analyses of tidal freshwater forest composition to improve prediction of TFF response to sea level rise. 
    more » « less
  3. Abstract. Environmental gradients can affect organic matter decay within and across wetlands and contribute to spatial heterogeneity in soil carbon stocks. We tested the sensitivity of decay rates to tidal flooding and soil depth in a minerogenic salt marsh using the tea bag index (TBI). Tea bags were buried at 10- and 50- cm along transects sited at lower, middle, and higher elevations that paralleled a headward eroding tidal creek. Plant and animal communities and soil properties were characterized once while replicate tea bags and porewaters were collected several times over one year. TBI decay rates were faster than prior litterbag studies in the same marsh, largely due to rapid green tea loss. Rooibos decay rates were comparable to natural marsh litter, potentially suggesting that is more useful as a standardized organic matter proxy than green tea. Decay was slowest at higher marsh elevations and not consistently related to other biotic (e.g., plants, crab burrows) and abiotic factors (e.g., porewater chemistry), indicating that local hydrology strongly affects organic matter loss rates. Tea BI rates were 32–118 % faster in the 10 cm horizon compared to 50 cm. Rates were fastest in the first three months and slowed 54–60 % at both depths between 3- and 6- months. Rates slowed further between 6- and 12- months but this was less dramatic at 10 cm (17 %) compared to 50 cm (50 %). Slower rates at depth and with time were unlikely due to the TBI stabilization factor, which was similar across depths and decreased from 6 to 12 months. Slower decay at 50 cm demonstrates that rates were constrained by the environmental conditions of this deeper horizon rather than the molecular composition of litter. Overall, these patterns suggest that hydrologic setting, which affects oxidant introduction and reactant removal and is often overlooked in marsh decomposition studies, may be a particularly important control on organic matter decay in the short term (3–12 months). transects sited at lower, middle, and higher elevations that paralleled a headward eroding tidal creek. 
    more » « less
  4. Abstract Predators regulate communities through top‐down control in many ecosystems. Because most studies of top‐down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short‐term and small‐scale experiments indicate that nektonic predators (e.g., blue crab, fish, terrapins) facilitate the foundational grass,Spartina alterniflora, by consuming herbivorous snails and crabs. To test both how nekton affect marsh processes when the entire animal community is present, and how prior results scale over time, we conducted a 3‐year nekton exclusion experiment in a Georgia salt marsh using replicated 19.6 m2plots. Our nekton exclusions increased densities of plant‐grazing snails and juvenile deposit‐feeding fiddler crab and, in Year 2, reduced predation on tethered juvenile snails, indicating that nektonic predators control these key macroinvertebrates. However, in Year 3, densities of mesopredatory benthic mud crabs increased threefold in nekton exclusions, erasing the tethered snails' predation refuge. Nekton exclusion had no effect onSpartinabiomass, likely because the observed mesopredator release suppressed grazing snail densities and elevated densities of fiddler crabs, whose burrowing alleviates soil stresses. Structural equation modeling supported the hypotheses that nektonic predators and mesopredators control invertebrate communities, with nektonic predators having stronger total effects onSpartinathan mud crabs by controlling densities of species that both suppress (grazers) and facilitate (fiddler crabs) plant growth. These findings highlight that salt marshes can be resilient to multiyear reductions in nektonic predators if mesopredators are present and that multiple pathways of trophic control manifest in different ways over time to mediate community dynamics. These results highlight that larger scale and longer‐term experiments can illuminate community dynamics not previously understood, even in well‐studied ecosystems such as salt marshes. 
    more » « less
  5. Blue carbon (C) ecosystems (mangroves, salt marshes, and seagrass beds) sequester high amounts of C, which can be respired back into the atmosphere, buried for long periods, or exported to adjacent ecosystems by tides. The lateral exchange of C between a salt marsh and adjacent water is a key factor that determines whether a salt marsh is a C source (i.e., outwelling) or sink in an estuary. We measured salinity, particulate organic carbon (POC), and dissolved organic carbon (DOC) seasonally over eight tidal cycles in a tidal creek at the Chongming Dongtan wetland from July 2017 to April 2018 to determine whether the marsh was a source or sink for estuarine C. POC and DOC fluxes were significantly correlated in the four seasons driven by water fluxes, but the concentration of DOC and POC were positively correlated only in autumn and winter. DOC and POC concentrations were the highest in autumn (3.54 mg/L and 4.19 mg/L, respectively) and the lowest in winter and spring (1.87 mg/L and 1.51 mg/L, respectively). The tidal creek system in different seasons showed organic carbon (OC) export, and the organic carbon fluxes during tidal cycles ranged from –12.65 to 4.04 g C/m2. The intensity showed significant seasonal differences, with the highest in summer, the second in autumn, and the lowest in spring. In different seasons, organic carbon fluxes during spring tides were significantly higher than that during neap tides. Due to the tidal asymmetry of the Yangtze River estuary and the relatively young stage, the salt marshes in the study area acted as a strong lateral carbon source. 
    more » « less
  6. null (Ed.)