skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crain, Robert_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT High-resolution imaging and strong gravitational lensing of high-redshift galaxies have enabled the detection of compact sources with properties similar to nearby massive star clusters. Often found to be very young, these sources may be globular clusters detected in their earliest stages. In this work, we compare predictions of high-redshift ($$z \sim 1$$–10) star cluster properties from the E-MOSAICS simulation of galaxy and star cluster formation with those of the star cluster candidates in strongly lensed galaxies from JWST and Hubble Space Telescope (HST) imaging. We select galaxies in the simulation that match the luminosities of the majority of lensed galaxies with star cluster candidates observed with JWST. We find that the luminosities, ages, and masses of the brightest star cluster candidates in the high-redshift galaxies are consistent with the E-MOSAICS model. In particular, the brightest cluster ages are in excellent agreement. The results suggest that star clusters in both low- and high-redshift galaxies may form via common mechanisms. However, the brightest clusters in the lensed galaxies tend to be $$\approx 1$$–$$1.5 \, \rm {mag}$$ brighter and $$\approx 0.5$$ dex more massive than the median E-MOSAICS predictions. We discuss the large number of effects that could explain the discrepancy, including simulation and observational limitations, stellar population models, cluster detection biases, and nuclear star clusters. Understanding these limitations would enable stronger tests of globular cluster formation models. 
    more » « less