skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Craven, Brent_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nasal turbinals, delicate and complex bones of the nasal cavity that support respiratory or olfactory mucosa (OM), are now easily studied using high resolution micro‐computed tomography (μ‐CT). Standard μ‐CT currently lacks the capacity to identify OM or other mucosa types without additional radio‐opaque staining techniques. However, even unstained mucosa is more radio‐opaque than air, and thus mucosal thickness can be discerned. Here, we assess mucosal thickness of the nasal fossa using the cranium of a cadaveric adult dog that was μ‐CT scanned with an isotropic resolution of 30 μm, and subsequently histologically sectioned and stained. After co‐alignment of μ‐CT slice planes to that of histology, mucosal thickness was estimated at four locations. Results based on either μ‐CT or histology indicate olfactory mucosa is thicker on average compared with non‐olfactory mucosa (non‐OM). In addition, olfactory mucosa has a lesser degree of variability than the non‐OM. Variability in the latter appears to relate mostly to the varying degree of vascularity of the lamina propria. Because of this, in structures with both specialized vascular respiratory mucosa and OM, such as the first ethmoturbinal (ET I), the range of thickness of OM and non‐OM may overlap. Future work should assess the utility of diffusible iodine‐based contrast enhanced CT techniques, which can differentiate epithelium from the lamina propria, to enhance our ability to differentiate mucosa types on more rostral ethmoturbinals. This is especially critical for structures such as ET I, which have mixed functional roles in many mammals. 
    more » « less