Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The collapse of ice shelves could expose tall ice cliffs at ice sheet margins. The marine ice cliff instability (MICI) is a hypothesis that predicts that, if these cliffs are tall enough, ice may fail structurally leading to self-sustained retreat. To date, projections that include MICI have been performed with a single model based on a simple parameterization. Here, we implement a physically motivated parameterization in three ice sheet models and simulate the response of the Amundsen Sea Embayment after a hypothetical collapse of floating ice. All models show that Thwaites Glacier would not retreat further in the 21st century. In another set of simulations, we force the grounding line to retreat into Thwaites’ deeper basin to expose a taller cliff. In these simulations, rapid thinning and velocity increase reduce the calving rate, stabilizing the cliff. These experiments show that Thwaites may be less vulnerable to MICI than previously thought, and model projections that include this process should be re-evaluated.more » « less
-
Abstract Marine ice-cliff instability could accelerate ice loss from Antarctica, and according to some model predictions could potentially contribute >1 m of global mean sea level rise by 2100 at current emission rates. Regions with over-deepening basins >1 km in depth (e.g., the West Antarctic Ice Sheet) are particularly susceptible to this instability, as retreat could expose increasingly tall cliffs that could exceed ice stability thresholds. Here, we use a suite of high-fidelity glacier models to improve understanding of the modes through which ice cliffs can structurally fail and derive a conservative ice-cliff failure retreat rate parameterization for ice-sheet models. Our results highlight the respective roles of viscous deformation, shear-band formation, and brittle-tensile failure within marine ice-cliff instability. Calving rates increase non-linearly with cliff height, but runaway ice-cliff retreat can be inhibited by viscous flow and back force from iceberg mélange.more » « less
-
Abstract To increase inclusivity, diversity, equity and accessibility in Antarctic science, we must build more positive and inclusive Antarctic field work environments. The International Thwaites Glacier Collaboration (ITGC) has engaged in efforts to contribute to that goal through a variety of activities since 2018, including creating an open-access ‘Field and Ship Best Practices’ guide, engaging in pre-field season team dynamics meetings, and surveying post-field season reflections and experiences. We report specific actions taken by ITGC and their outcomes. We found that strong and supported early career researchers brought new and important perspectives regarding strategies for transforming culture. We discovered that engaged and involved senior leadership was also critical for expanding participation and securing funding to support efforts. Pre-field discussions involving all field team members were particularly helpful for setting expectations, improving sense of belonging, describing field work best practices, and co-creating a positive work culture.more » « less
An official website of the United States government
