skip to main content

Search for: All records

Creators/Authors contains: "Cronin, Thomas M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Salinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present foraminifera-bound nitrogen isotopes from Arctic Ocean sediments since 35,000 years ago to reconstruct past changes in nutrient sources and the degree of nutrient consumption in surface waters, the latter reflecting stratification. During the last ice age and early deglaciation, the Arctic was dominated by Atlantic-sourced nitrate and incomplete nitrate consumption, indicating weakermore »stratification. Starting at 11,000 years ago in the western Arctic, there is a clear isotopic signal of Pacific-sourced nitrate and complete nitrate consumption associated with the flooding of the Bering Strait. These changes reveal that the strong stratification of the western Arctic relies on low-salinity inflow through the Bering Strait. In the central Arctic, nitrate consumption was complete during the early Holocene, then declined after 5,000 years ago as summer insolation decreased. This sequence suggests that precipitation and riverine freshwater fluxes control the stratification of the central Arctic Ocean. Based on these findings, ongoing warming will cause strong stratification to expand into the central Arctic, slowing the nutrient supply to surface waters and thus limiting future phytoplankton productivity.

    « less
  2. Abstract. The northern sector of the Greenland Ice Sheet is considered to beparticularly susceptible to ice mass loss arising from increased glacierdischarge in the coming decades. However, the past extent and dynamics ofoutlet glaciers in this region, and hence their vulnerability to climatechange, are poorly documented. In the summer of 2019, the Swedish icebreakerOden entered the previously unchartered waters of Sherard Osborn Fjord, whereRyder Glacier drains approximately 2 % of Greenland's ice sheet into theLincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier andits ice tongue by combining radiocarbon dating with sedimentary faciesanalyses along a 45 km transect of marinemore »sediment cores collected betweenthe modern ice tongue margin and the mouth of the fjord. The resultsillustrate that Ryder Glacier retreated from a grounded position at thefjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by theMiddle Holocene (6.3±0.3 ka cal BP), likely becoming completelyland-based. A re-advance of Ryder Glacier occurred in the Late Holocene,becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue,similar in extent to its current position was established in the LateHolocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) andextended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited duringthe entire retreat and regrowth phases, suggesting the persistence of an icetongue that only collapsed when the glacier retreated behind a prominenttopographic high at the landward end of the fjord. Sherard Osborn Fjordnarrows inland, is constrained by steep-sided cliffs, contains a number ofbathymetric pinning points that also shield the modern ice tongue andgrounding zone from warm Atlantic waters, and has a shallowing inlandsub-ice topography. These features are conducive to glacier stability andcan explain the persistence of Ryder's ice tongue while the glacier remainedmarine-based. However, the physiography of the fjord did not halt thedramatic retreat of Ryder Glacier under the relatively mild changes inclimate forcing during the Holocene. Presently, Ryder Glacier is groundedmore than 40 km seaward of its inferred position during the Middle Holocene,highlighting the potential for substantial retreat in response to ongoingclimate change.« less