skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crook, Ashley D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding how evolution shapes genetic networks to create new developmental forms is a central question in biology. Flowering shoot (inflorescence) architecture varies significantly across plant families and is a key target of genetic engineering efforts in many crops1–4. Asteraceae (sunflower family), comprising 10% of flowering plants, all have capitula, a novel inflorescence that mimics a single flower5,6. Asteraceae capitula are highly diverse but are thought to have evolved once via unknown mechanisms7,8. During capitulum development, shoot stem cells undergo prolonged proliferation to accommodate the formation of intersecting spirals of flowers (florets) along the disk-shaped head9,10. Here we show that capitulum evolution paralleled decreases in CLAVATA3 (CLV3) peptide signaling, a conserved repressor of stem cell proliferation. We trace this to novel amino acid changes in the mature CLV3 peptide which decrease receptor binding and downstream transcriptional outputs. Using genetically tractable Asteraceae models, we show that reversion ofCLV3to a more active form impairs Asteraceae stem cell regulation and capitulum development. Additionally, we trace the evolution ofCLV3and its receptors across the Asterales allowing inferences on capitulum evolution within this lineage. Our findings reveal novel mechanisms driving evolutionary innovation in plant reproduction and suggest new approaches for genetic engineering in crop species. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. null (Ed.)
    Cell division is often regulated by extracellular signaling networks to ensure correct patterning during development. In Arabidopsis , the SHORT-ROOT (SHR)/SCARECROW (SCR) transcription factor dimer activates CYCLIND6 ; 1 ( CYCD6;1 ) to drive formative divisions during root ground tissue development. Here, we show plasma-membrane-localized BARELY ANY MERISTEM1/2 (BAM1/2) family receptor kinases are required for SHR -dependent formative divisions and CYCD6;1 expression, but not SHR -dependent ground tissue specification. Root-enriched CLE ligands bind the BAM1 extracellular domain and are necessary and sufficient to activate SHR -mediated divisions and CYCD6;1 expression. Correspondingly, BAM-CLE signaling contributes to the restriction of formative divisions to the distal root region. Additionally, genetic analysis reveals that BAM-CLE and SHR converge to regulate additional cell divisions outside of the ground tissues. Our work identifies an extracellular signaling pathway regulating formative root divisions and provides a framework to explore this pathway in patterning and evolution. 
    more » « less