skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Crook, Damon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Coevolution between plants and insects is thought to be responsible for generating biodiversity. Extensive research has focused largely on antagonistic herbivorous relationships, but mutualistic pollination systems also likely contribute to diversification. Here we describe an example of chemically-mediated mutualistic species interactions affecting trait evolution and lineage diversification. We show that volatile compounds produced by closely related species of Zamia cycads are more strikingly different from each other than are other phenotypic characters, and that two distantly related pollinating weevil species have specialized responses only to volatiles from their specific host Zamia species. Plant transcriptomes show that approximately a fifth of genes related to volatile production are evolving under positive selection, but we find no differences in the relative proportion of genes under positive selection in different categories. The importance of phenotypic divergence coupled with chemical communication for the maintenance of this obligate mutualism highlights chemical signaling as a key mechanism of coevolution between cycads and their weevil pollinators. 
    more » « less
  2. Most cycads engage in brood-site pollination mutualisms, yet the mechanism by which the Cycadales entice pollination services from diverse insect mutualists remains unknown. Here, we characterize a push-pull pollination mechanism between a New World cycad and its weevil pollinators that mirrors the mechanism between a distantly related Old World cycad and its thrips pollinators. The behavioral convergence between weevils and thrips, combined with molecular phylogenetic dating and a meta-analysis of thermogenesis and coordinated patterns of volatile attraction and repulsion suggest that a push-pull pollination mutualism strategy is ancestral in this ancient, dioecious plant group. Hence, it may represent one of the earliest insect/plant pollination mechanisms, arising long before the evolution of visual floral signaling commonly used by flowering plants. 
    more » « less