skip to main content

Search for: All records

Creators/Authors contains: "Crowther, Paul A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We present a grid of stellar models at supersolar metallicity (Z = 0.020) extending the previous grids of Geneva models at solar and sub-solar metallicities. A metallicity of Z = 0.020 was chosen to match that of the inner Galactic disc. A modest increase of 43 per cent (= 0.02/0.014) in metallicity compared to solar models means that the models evolve similarly to solar models but with slightly larger mass-loss. Mass-loss limits the final total masses of the supersolar models to 35 M⊙ even for stars with initial masses much larger than 100 M⊙. Mass-loss is strong enough in stars above 20 M⊙ for rotating stars (25 M⊙ for non-rotating stars) to remove the entire hydrogen-rich envelope. Our models thus predict SNII below 20 M⊙ for rotating stars (25 M⊙ for non-rotating stars) and SNIb (possibly SNIc) above that. We computed both isochrones and synthetic clusters to compare our supersolar models to the Westerlund 1 (Wd1) massive young cluster. A synthetic cluster combining rotating and non-rotating models with an age spread between log10(age/yr) = 6.7 and 7.0 is able to reproduce qualitatively the observed populations of WR, RSG, and YSG stars in Wd1, in particular their simultaneous presence at $\log _{10}(L/\mathit {\mathrm{ L}}_{\odot })$ = 5–5.5. The quantitative agreement is imperfect and wemore »discuss the likely causes: synthetic cluster parameters, binary interactions, mass-loss and their related uncertainties. In particular, mass-loss in the cool part of the HRD plays a key role.

    « less