skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cubuk, Ekin D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Numerical simulations have revolutionized material design. However, although simulations excel at mapping an input material to its output property, their direct application to inverse design has traditionally been limited by their high computing cost and lack of differentiability. Here, taking the example of the inverse design of a porous matrix featuring targeted sorption isotherm, we introduce a computational inverse design framework that addresses these challenges, by programming differentiable simulation on TensorFlow platform that leverages automated end-to-end differentiation. Thanks to its differentiability, the simulation is used to directly train a deep generative model, which outputs an optimal porous matrix based on an arbitrary input sorption isotherm curve. Importantly, this inverse design pipeline leverages the power of tensor processing units (TPU)—an emerging family of dedicated chips, which, although they are specialized in deep learning, are flexible enough for intensive scientific simulations. This approach holds promise to accelerate inverse materials design. 
    more » « less
  2. A graph-based machine learning model is built to predict atom dynamics from their static structure, which, in turn, unveils the predictive power of static structure in dynamical evolution of disordered phases. 
    more » « less
  3. Significance Engineering at the nanoscale is rich and complex: researchers have designed small-scale structures ranging from smiley faces to intricate sensors. However, designing specific dynamical features within these structures has proven to be significantly harder than designing the structures themselves. Biology, on the other hand, demonstrates fine-tuned kinetic control at nearly all scales: viruses that form too quickly are rarely infectious, and proper embryonic development depends on the relative rate of tissue growth. Clearly, kinetic features are designable and critical for biological function. We demonstrate a method to control kinetic features of complex systems and apply it to two classic self-assembly systems. Studying and optimizing for kinetic features, rather than static structures, opens the door to a different approach to materials design. 
    more » « less
  4. Including prior knowledge is important for effective machine learning models in physics, and is usually achieved by explicitly adding loss terms or constraints on model architectures. Prior knowledge embedded in the physics computation itself rarely draws attention. We show that solving the Kohn-Sham equations when training neural networks for the exchange-correlation functional provides an implicit regularization that greatly improves generalization. Two separations suffice for learning the entire one-dimensional H2 dissociation curve within chemical accuracy, including the strongly correlated region. Our models also generalize to unseen types of molecules and overcome self-interaction error. 
    more » « less