skip to main content

Search for: All records

Creators/Authors contains: "Cuevas-Maraver, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. It is widely accepted that the number of reported cases during the first stages of the COVID-19 pandemic severely underestimates the number of actual cases. We leverage delay embedding theorems of Whitney and Takens and use Gaussian process regression to estimate the number of cases during the first 2020 wave based on the second wave of the epidemic in several European countries, South Korea and Brazil. We assume that the second wave was more accurately monitored, even though we acknowledge that behavioural changes occurred during the pandemic and region- (or country-) specific monitoring protocols evolved. We then construct a manifold diffeomorphic to that of the implied original dynamical system, using fatalities or hospitalizations only. Finally, we restrict the diffeomorphism to the reported cases coordinate of the dynamical system. Our main finding is that in the European countries studied, the actual cases are under-reported by as much as 50%. On the other hand, in South Korea—which had a proactive mitigation approach—a far smaller discrepancy between the actual and reported cases is predicted, with an approximately 18% predicted underestimation. We believe that our backcasting framework is applicable to other epidemic outbreaks where (due to limited or poor quality data) there is uncertainty around the actual cases. 
    more » « less
  3. null (Ed.)
    Abstract Guided by a rigorous mathematical result, we have earlier introduced a numerical algorithm, which using as input the cumulative number of deaths caused by COVID-19, can estimate the effect of easing of the lockdown conditions. Applying this algorithm to data from Greece, we extend it to the case of two subpopulations, namely, those consisting of individuals below and above 40 years of age. After supplementing the Greek data for deaths with the data for the number of individuals reported to be infected by SARS-CoV-2, we estimated the effect on deaths and infections in the case that the easing of the lockdown measures is different for these two subpopulations. We found that if the lockdown measures are partially eased only for the young subpopulation, then the effect on deaths and infections is small. However, if the easing is substantial for the older population, this effect may be catastrophic. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)