Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

The paper introduces a new algorithm for planning in partially observable Markov decision processes (POMDP) based on the idea of aggregate simulation. The algorithm uses product distributions to approximate the belief state and shows how to build a representation graph of an approximate actionvalue function over belief space. The graph captures the result of simulating the model in aggregate under independence assumptions, giving a symbolic representation of the value function. The algorithm supports large observation spaces using sampling networks, a representation of the process of sampling values of observations, which is integrated into the graph representation. Following previous work inmore »

This paper investigates online stochastic planning for problems with large factored state and action spaces. One promising approach in recent work estimates the quality of applicable actions in the current state through aggregate simulation from the states they reach. This leads to significant speedup, compared to search over concrete states and actions, and suffices to guide decision making in cases where the performance of a random policy is informative of the quality of a state. The paper makes two significant improvements to this approach. The first, taking inspiration from lifted belief propagation, exploits the structure of the problem to derivemore »

It is well known that the problems of stochastic planning and probabilistic inference are closely related. This paper makes two contributions in this context. The first is to provide an analysis of the recently developed SOGBOFA heuristic planning algorithm that was shown to be effective for problems with large factored state and action spaces. It is shown that SOGBOFA can be seen as a specialized inference algorithm that computes its solutions through a combination of a symbolic variant of belief propagation and gradient ascent. The second contribution is a new solver for Marginal MAP (MMAP) inference. We introduce a newmore »

Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hardscatter interaction onebyone, the inelastic interactions are presampled, independent of the hardmore »Free, publiclyaccessible full text available December 1, 2023

Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPUintensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of highaccuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machinelearning techniques and is deployed tomore »Free, publiclyaccessible full text available December 1, 2023

Free, publiclyaccessible full text available May 1, 2023

Free, publiclyaccessible full text available May 1, 2023

Abstract The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $$10
more » Free, publiclyaccessible full text available March 1, 2023