Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Complex spatial structures in polar mesospheric cloud (PMC) images provide visual clues to the dynamics that occur in the summer mesosphere. In this study, we document one such structure, a PMC front, by analyzing PMC images in the northern hemisphere from the Cloud Imaging and Particle Size (CIPS) instrument onboard the aeronomy of ice in the mesosphere (AIM) satellite. A PMC front is defined as a sharp boundary that separates cloudy and mostly clear regions, and where the clouds at the front boundary are brighter than the clouds in the cloudy region. We explore the environment that supports the formation of PMC fronts using near‐coincident temperature and water vapor observations from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. A comparison of PMC front locations to near‐coincident temperature profiles reveals the presence of inversion layers at PMC altitudes. The adiabatic and superadiabatic topside lapse rates of these temperature inversions indicate that some of the identified inversion layers may have been formed by gravity wave (GW) dissipation. The structure of the squared buoyancy frequency profiles indicates a stable layer or thermal duct that can be associated with large‐amplitude mesospheric inversion layers (MILs) that extend large distances. These inversion layers may be conducive to horizontal wave propagation. We hypothesize that ducted GWs may be a formation mechanism of PMC fronts.more » « less
-
The mesospheric polar vortex (MPV) plays a critical role in coupling the atmosphere-ionosphere system, so its accurate simulation is imperative for robust predictions of the thermosphere and ionosphere. While the stratospheric polar vortex is widely understood and characterized, the mesospheric polar vortex is much less well-known and observed, a short-coming that must be addressed to improve predictability of the ionosphere. The winter MPV facilitates top-down coupling via the communication of high energy particle precipitation effects from the thermosphere down to the stratosphere, though the details of this mechanism are poorly understood. Coupling from the bottom-up involves gravity waves (GWs), planetary waves (PWs), and tidal interactions that are distinctly different and important during weak vs. strong vortex states, and yet remain poorly understood as well. Moreover, generation and modulation of GWs by the large wind shears at the vortex edge contribute to the generation of traveling atmospheric disturbances and traveling ionospheric disturbances. Unfortunately, representation of the MPV is generally not accurate in state-of-the-art general circulation models, even when compared to the limited observational data available. Models substantially underestimate eastward momentum at the top of the MPV, which limits the ability to predict upward effects in the thermosphere. The zonal wind bias responsible for this missing momentum in models has been attributed to deficiencies in the treatment of GWs and to an inaccurate representation of the high-latitude dynamics. In the coming decade, simulations of the MPV must be improved.more » « less
An official website of the United States government
