skip to main content

Search for: All records

Creators/Authors contains: "Cummins, Christopher C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Herein is reported the structural characterization and scalable preparation of the elusive iron–phosphido complex FpP( t Bu)(F) (2-F, Fp = (Fe(η 5 -C 5 H 5 )(CO) 2 )) and its precursor FpP( t Bu)(Cl) (2-Cl) in 51% and 71% yields, respectively. These phosphide complexes are proposed to be relevant to an organoiron catalytic cycle for phosphinidene transfer to electron-deficient alkenes. Examination of their properties led to the discovery of a more efficient catalytic system involving the simple, commercially available organoiron catalyst Fp 2 . This improved catalysis also enabled the preparation of new phosphiranes with high yields ( t BuPCH 2 CHR; R = CO 2 Me, 41%; R = CN, 83%; R = 4-biphenyl, 73%; R = SO 2 Ph, 71%; R = POPh 2 , 70%; R = 4-pyridyl, 82%; R = 2-pyridyl, 67%; R = PPh 3 + , 64%) and good diastereoselectivity, demonstrating the feasibility of the phosphinidene group-transfer strategy in synthetic chemistry. Experimental and theoretical studies suggest that the original catalysis involves 2-X as the nucleophile, while for the new Fp 2 -catalyzed reaction they implicate a diiron–phosphido complex Fp 2 (P t Bu), 4, as the nucleophile which attacks the electron-deficient olefin in the key first P–C bond-forming step. In both systems, the initial nucleophilic attack may be accompanied by favorable five-membered ring formation involving a carbonyl ligand, a (reversible) pathway competitive with formation of the three-membered ring found in the phosphirane product. A novel radical mechanism is suggested for the new Fp 2 -catalyzed system. 
    more » « less
  2. null (Ed.)
  3. Lithium peroxide is the crucial storage material in lithium–air batteries. Understanding the redox properties of this salt is paramount toward improving the performance of this class of batteries. Lithium peroxide, upon exposure to p –benzoquinone ( p –C 6 H 4 O 2 ) vapor, develops a deep blue color. This blue powder can be formally described as [Li 2 O 2 ] 0.3   · [LiO 2 ] 0.7   · {Li[ p –C 6 H 4 O 2 ]} 0.7 , though spectroscopic characterization indicates a more nuanced structural speciation. Infrared, Raman, electron paramagnetic resonance, diffuse-reflectance ultraviolet-visible and X-ray absorption spectroscopy reveal that the lithium salt of the benzoquinone radical anion forms on the surface of the lithium peroxide, indicating the occurrence of electron and lithium ion transfer in the solid state. As a result, obligate lithium superoxide is formed and encapsulated in a shell of Li[ p –C 6 H 4 O 2 ] with a core of Li 2 O 2 . Lithium superoxide has been proposed as a critical intermediate in the charge/discharge cycle of Li–air batteries, but has yet to be isolated, owing to instability. The results reported herein provide a snapshot of lithium peroxide/superoxide chemistry in the solid state with redox mediation. 
    more » « less