skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cundari, Thomas R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reversible cyclopropane formation is examined in a chromium diamide–diimine chelate complexviareduction. Sites of electrophilicity incur similar and divergent chemistry; structural, electrochemical, and calculational studies afford their rationale. 
    more » « less
  2. Abstract DNA methylation at cytosine bases (5-methylcytosine, 5mC) is a heritable epigenetic mark regulating gene expression. While enzymes that metabolize 5mC are well-characterized, endogenous signaling molecules that regulate DNA methylation machinery have not been described. We report that physiological nitric oxide (NO) concentrations reversibly inhibit the DNA demethylases TET and ALKBH2 by binding to the mononuclear non-heme iron atom forming a dinitrosyliron complex (DNIC) and preventing cosubstrates from binding. In cancer cells treated with exogenous NO, or endogenously synthesizing NO, 5mC and 5-hydroxymethylcytosine (5hmC) increase, with no changes in DNA methyltransferase activity. 5mC is also significantly increased in NO-producing patient-derived xenograft tumors from mice. Genome-wide methylome analysis of cells chronically treated with NO (10 days) shows enrichment of 5mC and 5hmC at gene-regulatory loci, correlating with altered expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a unique epigenetic role for NO. 
    more » « less
    Free, publicly-accessible full text available February 18, 2026
  3. A dipyrrin-supported copper complex mediates C–H bond amination and aziridination of exogenous substrates using electron-deficient arylazides, proceeding through copper-nitrene adducts. 
    more » « less
  4. Electro- and photocatalytic reduction of N 2 to NH 3 —the nitrogen reduction reaction (NRR)—is an environmentally- and energy-friendly alternative to the Haber-Bosch process for ammonia production. There is a great demand for the development of novel semiconductor-based electrocatalysts with high efficiency and stability for the direct conversion of inert substrates—including N 2 to ammonia—using visible light irradiation under ambient conditions. Herein we report electro-, and photocatalytic NRR with transition metal dichalcogenides (TMDCs), viz MoS 2 and WS 2 . Improved acid treatment of bulk TMDCs yields exfoliated TMDCs (exTMDCs) only a few layers thick with ∼10% S vacancies. Linear scan voltammograms on exMoS 2 and exWS 2 electrodes reveal significant NRR activity for exTMDC-modified electrodes, which is greatly enhanced by visible light illumination. Spectral measurements confirm ammonia as the main reaction product of electrocatalytic and photocatalytic NRR, and the absence of hydrazine byproduct. Femtosecond-resolved transient absorption studies provide direct evidence of interaction between photo-generated excitons/trions with N 2 adsorbed at S vacancies. DFT calculations corroborate N 2 binding to exMoS 2 at S-vacancies, with substantial π -backbonding to activate dinitrogen. Our findings suggest that chemically functionalized exTMDC materials could fulfill the need for highly-desired, inexpensive catalysts for the sustainable production of NH 3 using Sunlight under neutral pH conditions without appreciable competing production of H 2 . 
    more » « less