skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Cunqueiro, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. Free, publicly-accessible full text available August 1, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. Abstract Three-body nuclear forces play an important role in the structure of nuclei and hypernuclei and are also incorporated in models to describe the dynamics of dense baryonic matter, such as in neutron stars. So far, only indirect measurements anchored to the binding energies of nuclei can be used to constrain the three-nucleon force, and if hyperons are considered, the scarce data on hypernuclei impose only weak constraints on the three-body forces. In this work, we present the first direct measurement of the p–p–p and p–p– $$\Lambda $$ Λ systems in terms of three-particle correlation functions carried out for pp collisions at $$\sqrt{s} = 13$$ s = 13 TeV. Three-particle cumulants are extracted from the correlation functions by applying the Kubo formalism, where the three-particle interaction contribution to these correlations can be isolated after subtracting the known two-body interaction terms. A negative cumulant is found for the p–p–p system, hinting to the presence of a residual three-body effect while for p–p– $$\Lambda $$ Λ the cumulant is consistent with zero. This measurement demonstrates the accessibility of three-baryon correlations at the LHC. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  8. Abstract The transverse-momentum $$(p_{\textrm{T}})$$ ( p T ) spectra of K $$^{*}(892)^{0}~$$ ∗ ( 892 ) 0 and $$\mathrm {\phi (1020)}~$$ ϕ ( 1020 ) measured with the ALICE detector up to $$p_{\textrm{T}} $$ p T  = 16 GeV/ c in the rapidity range $$-1.2< y < 0.3,$$ - 1.2 < y < 0.3 , in p–Pb collisions at the center-of-mass energy per nucleon–nucleon collision $$\sqrt{s_{\textrm{NN}}} = 5.02$$ s NN = 5.02  TeV are presented as a function of charged particle multiplicity and rapidity. The measured $$p_{\textrm{T}} $$ p T distributions show a dependence on both multiplicity and rapidity at low $$p_{\textrm{T}} $$ p T whereas no significant dependence is observed at high $$p_{\textrm{T}} $$ p T . A rapidity dependence is observed in the $$p_{\textrm{T}} $$ p T -integrated yield (d N /d y ), whereas the mean transverse momentum $$\left( \langle p_{\textrm{T}} \rangle \right) $$ ⟨ p T ⟩ shows a flat behavior as a function of rapidity. The rapidity asymmetry ( $$Y_{\textrm{asym}}$$ Y asym ) at low $$p_{\textrm{T}} $$ p T (< 5 GeV/ c ) is more significant for higher multiplicity classes. At high $$p_{\textrm{T}} $$ p T , no significant rapidity asymmetry is observed in any of the multiplicity classes. Both K $$^{*}(892)^{0}~$$ ∗ ( 892 ) 0 and $$\mathrm {\phi (1020)}~$$ ϕ ( 1020 ) show similar $$Y_{\textrm{asym}}$$ Y asym . The nuclear modification factor $$(Q_{\textrm{CP}})$$ ( Q CP ) as a function of $$p_{\textrm{T}} $$ p T shows a Cronin-like enhancement at intermediate $$p_{\textrm{T}} $$ p T , which is more prominent at higher rapidities (Pb-going direction) and in higher multiplicity classes. At high $$p_{\textrm{T}}$$ p T (> 5 GeV/ $$c$$ c ), the $$Q_{\textrm{CP}}$$ Q CP values are greater than unity and no significant rapidity dependence is observed. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  9. A bstract The measurement of the production of charm jets, identified by the presence of a D 0 meson in the jet constituents, is presented in proton–proton collisions at centre-of-mass energies of $$ \sqrt{s} $$ s = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The D 0 mesons were reconstructed from their hadronic decay D 0 → K − π + and the respective charge conjugate. Jets were reconstructed from D 0 -meson candidates and charged particles using the anti- k T algorithm, in the jet transverse momentum range 5 < p T , chjet < 50 GeV/ c , pseudorapidity | η jet | < 0 . 9 − R , and with the jet resolution parameters R = 0 . 2 , 0 . 4 , 0 . 6. The distribution of the jet momentum fraction carried by a D 0 meson along the jet axis $$ \left({z}_{\Big\Vert}^{\textrm{ch}}\right) $$ z ‖ ch was measured in the range 0 . 4 < $$ {z}_{\Big\Vert}^{\textrm{ch}} $$ z ‖ ch < 1 . 0 in four ranges of the jet transverse momentum. Comparisons of results for different collision energies and jet resolution parameters are also presented. The measurements are compared to predictions from Monte Carlo event generators based on leading-order and next-to-leading-order perturbative quantum chromodynamics calculations. A generally good description of the main features of the data is obtained in spite of a few discrepancies at low p T , chjet . Measurements were also done for R = 0 . 3 at $$ \sqrt{s} $$ s = 5 . 02 and are shown along with their comparisons to theoretical predictions in an appendix to this paper. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024