skip to main content


Search for: All records

Creators/Authors contains: "Czaplewski, Cezary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the results for CAPRI Round 54, the 5th joint CASP‐CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo‐trimers, 13 heterodimers including 3 antibody–antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High‐quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2‐Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2‐Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.

     
    more » « less
  2. ABSTRACT

    The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones involved in protein folding, aggregate prevention, and protein disaggregation. They consist of the substrate‐binding domain (SBD) that binds client substrates, and the nucleotide‐binding domain (NBD), whose cycles of nucleotide hydrolysis and exchange underpin the activity of the chaperone. To characterize the structure–function relationships that link the binding state of the NBD to its conformational behavior, we analyzed the dynamics of the NBD of the Hsp70 chaperone fromBos taurus(PDB 3C7N:B) by all‐atom canonical molecular dynamics simulations. It was found that essential motions within the NBD fall into three major classes: the mutual class, reflecting tendencies common to all binding states, and the ADP‐ and ATP‐unique classes, which reflect conformational trends that are unique to either the ADP‐ or ATP‐bound states, respectively. “Mutual” class motions generally describe “in‐plane” and/or “out‐of‐plane” (scissor‐like) rotation of the subdomains within the NBD. This result is consistent with experimental nuclear magnetic resonance data on the NBD. The “unique” class motions target specific regions on the NBD, usually surface loops or sites involved in nucleotide binding and are, therefore, expected to be involved in allostery and signal transmission. For all classes, and especially for those of the “unique” type, regions of enhanced mobility can be identified; these are termed “hot spots,” and their locations generally parallel those found by NMR spectroscopy. The presence of magnesium and potassium cations in the nucleotide‐binding pocket was also found to influence the dynamics of the NBD significantly. Proteins 2015; 83:282–299. © 2014 Wiley Periodicals, Inc.

     
    more » « less