Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 15, 2025
- 
            Free, publicly-accessible full text available November 26, 2025
- 
            Governmental and nongovernmental organizations have increasingly relied on early-warning systems of conflict to support their decisionmaking. Predictions of war intensity as probability distributions prove closer to what policymakers need than point estimates, as they encompass useful representations of both the most likely outcome and the lower-probability risk that conflicts escalate catastrophically. Point-estimate predictions, by contrast, fail to represent the inherent uncertainty in the distribution of conflict fatalities. Yet, current early warning systems are preponderantly focused on providing point estimates, while efforts to forecast conflict fatalities as a probability distribution remain sparse. Building on the predecessor VIEWS competition, we organize a prediction challenge to encourage endeavours in this direction. We invite researchers across multiple disciplinary fields, from conflict studies to computer science, to forecast the number of fatalities in state-based armed conflicts, in the form of the UCDP ‘best’ estimates aggregated to two units of analysis (country-months and PRIO-GRID-months), with estimates of uncertainty. This article introduces the goal and motivation behind the prediction challenge, presents a set of evaluation metrics to assess the performance of the forecasting models, describes the benchmark models which the contributions are evaluated against, and summarizes the salient features of the submitted contributions.more » « lessFree, publicly-accessible full text available May 6, 2026
- 
            This article introduces ConfliBERT-Spanish, a pre-trained language model specialized in political conflict and violence for text written in the Spanish language. Our methodology relies on a large corpus specialized in politics and violence to extend the capacity of pre-trained models capable of processing text in Spanish. We assess the performance of ConfliBERT-Spanish in comparison to Multilingual BERT and BETO baselines for binary classification, multi-label classification, and named entity recognition. Results show that ConfliBERT-Spanish consistently outperforms baseline models across all tasks. These results show that our domain-specific language-specific cyberinfrastructure can greatly enhance the performance of NLP models for Latin American conflict analysis. This methodological advancement opens vast opportunities to help researchers and practitioners in the security sector to effectively analyze large amounts of information with high degrees of accuracy, thus better equipping them to meet the dynamic and complex security challenges affecting the region.more » « less
- 
            Analyzing conflicts and political violence around the world is a persistent challenge in the political science and policy communities due in large part to the vast volumes of specialized text needed to monitor conflict and violence on a global scale. To help advance research in political science, we introduce ConfliBERT, a domain-specific pre-trained language model for conflict and political violence. We first gather a large domain-specific text corpus for language modeling from various sources. We then build ConfliBERT using two approaches: pre-training from scratch and continual pre-training. To evaluate ConfliBERT, we collect 12 datasets and implement 18 tasks to assess the models’ practical application in conflict research. Finally, we evaluate several versions of ConfliBERT in multiple experiments. Results consistently show that ConfliBERT outperforms BERT when analyzing political violence and conflict.more » « less
- 
            This paper explores three different model components to improve predictive performance over the ViEWS benchmark: a class of neural networks that account for spatial and temporal dependencies; the use of CAMEO-coded event data; and the continuous rank probability score (CRPS), which is a proper scoring metric. We forecast changes in state based violence across Africa at the grid-month level. The results show that spatio-temporal graph convolutional neural network models offer consistent improvements over the benchmark. The CAMEO-coded event data sometimes improve performance, but sometimes decrease performance. Finally, the choice of performance metric, whether it be the mean squared error or a proper metric such as the CRPS, has an impact on model selection. Each of these components–algorithms, measures, and metrics–can improve our forecasts and understanding of violence.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
