- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chou, Tom (3)
-
Bottcher, Lucas (1)
-
Böttcher, Lucas (1)
-
Chuang, Yao-Li (1)
-
D'Orsogna, Maria (1)
-
D'Orsogna, Maria R. (1)
-
R. D'Orsogna, Maria (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We develop a statistical model for the testing of disease prevalence in a population. The model assumes a binary test result, positive or negative, but allows for biases in sample selection and both type I (false positive) and type II (false negative) testing errors. Our model also incorporates multiple test types and is able to distinguish between retesting and exclusion after testing. Our quantitative framework allows us to directly interpret testing results as a function of errors and biases. By applying our testing model to COVID-19 testing data and actual case data from specific jurisdictions, we are able to estimate and provide uncertainty quantification of indices that are crucial in a pandemic, such as disease prevalence and fatality ratios. This article is part of the theme issue ‘Data science approach to infectious disease surveillance’.more » « less
-
Bottcher, Lucas; D'Orsogna, Maria; Chou, Tom (, European journal of epidemiology)null (Ed.)
-
Chuang, Yao-Li; Chou, Tom; R. D'Orsogna, Maria (, Networks & Heterogeneous Media)
An official website of the United States government

Full Text Available