skip to main content

Search for: All records

Creators/Authors contains: "Dabholkar, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kong, S.C. (Ed.)
    While the Next Generation Science Standards (NGSS) have presented computational thinking(CT)as an integral part of scientific inquiry, little work has been done to explicitly enable this connection in classrooms. We report on the efforts of one such design-based implementation research project which, with participation from local teachers, has been implementing CT infused STEM units in biology and chemistry classrooms. Using teacher reflections facilitated by an external evaluator, research field notes, and interviews, we identify possible issues of frame alignment in our implementations–that CT practices, particularly using computational models, were valued but would not enable students to gain a deeper understanding of scientific content. We then use this analysis and Schulman’s definition of teacher case knowledge to design a new element of the project that aims to enable teachers to promote collaborative scientific practice using computational models in the classroom that we call Lesson 0. We conclude with the discussion of a pilot implementation of this new lesson.
  2. Kong, S.C. (Ed.)
  3. Emergent Systems Microworlds (ESMs) are a special kind of computational models. Design of ESMs involves a combination of two approaches in Learning Sciences, namely agent-based modelling of complex systems and constructionism. ESMs and ESM-based curricula are frameworks for designing learning environments to foster the learning of complex scientific phenomena by engaging students in authentic scientific inquiry practices. In this paper, we discuss our approach in the context of an ESM called GenEvo that we designed for the learning of molecular genetics and evolution. We further discuss how agent-based representations and constructionist design principles mediated students’ expansive learning, as students collaboratively con- structed knowledge by engaging in authentic scientific inquiry practices.
  4. In the decades since Papert published Mindstorms (1980), computation has transformed nearly every branch of scientific practice. Accordingly, there is increasing recognition that computation and computational thinking (CT) must be a core part of STEM education in a broad range of subjects. Previous work has demonstrated the efficacy of incorporating computation into STEM courses and introduced a taxonomy of CT practices in STEM. However, this work rarely involved teachers as more than implementers of units designed by researchers. In The Children’s Machine, Papert asked “What can be done to mobilize the potential force for change inherent in the position of teachers?” (Papert, 1994, pg. 79). We argue that involving teachers as co-design partners supports them to be cultural change agents in education. We report here on the first phase of a research project in which we worked with STEM educators to co-design curricular science units that incorporate computational thinking and practices. Eight high school teachers and one university professor joined nine members of our research team for a month-long Computational Thinking Summer Institute (CTSI). The co-design process was a constructionist design and learning experience for both the teachers and researchers. We focus here on understanding the co-design process and itsmore »implications for teachers by asking: (1) How did teachers shift in their attitudes and confidence regarding CT? (2) What different co-design styles emerged and did any tensions arise? Generally, we found that teachers gained confidence and skills in CT and computational tools over the course of the summer. Only one teacher reported a decrease in confidence in one aspect of CT (computational modeling), but this seemed to result from gaining a broader and more nuanced understanding of this rich area. A range of co-design styles emerged over the summer. Some teachers chose to focus on designing the curriculum and advising on the computational tools to be used in it, while leaving the construction of those tools to their co-designers. Other teachers actively participated in constructing models and computational tools themselves. The pluralism of co-design styles allowed teachers of various comfort levels with computation to meaningfully contribute to a computationally enhanced constructionist curriculum. However, it also led to a tension for some teachers between working to finish their curriculum versus gaining experience with computational tools. In the time crunch to complete their unit during CTSI, some teachers chose to save time by working on the curriculum while their co-design partners (researchers) created the supporting computational tools. These teachers still grew in their computational sophistication, but they could not devote as much time as they wanted to their own computational learning.« less