skip to main content

Search for: All records

Creators/Authors contains: "Dadap, Jerry I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the chemical and physical properties of particles is an important scientific, engineering, and medical issue that is crucial to air quality, human health, and environmental chemistry. Of special interest are aerosol particles floating in the air for both indoor virus transmission and outdoor atmospheric chemistry. The growth of bio- and organic-aerosol particles in the air is intimately correlated with chemical structures and their reactions in the gas phase at aerosol particle surfaces and in-particle phases. However, direct measurements of chemical structures at aerosol particle surfaces in the air are lacking. Here we demonstrate in situ surface-specific vibrational sum frequency scattering (VSFS) to directly identify chemical structures of molecules at aerosol particle surfaces. Furthermore, our setup allows us to simultaneously probe hyper-Raman scattering (HRS) spectra in the particle phase. We examined polarized VSFS spectra of propionic acid at aerosol particle surfaces and in particle bulk. More importantly, the surface adsorption free energy of propionic acid onto aerosol particles was found to be less negative than that at the air/water interface. These results challenge the long-standing hypothesis that molecular behaviors at the air/water interface are the same as those at aerosol particle surfaces. Our approach opens a new avenue inmore »revealing surface compositions and chemical aging in the formation of secondary organic aerosols in the atmosphere as well as chemical analysis of indoor and outdoor viral aerosol particles.« less
    Free, publicly-accessible full text available December 1, 2023
  2. Recently, our groups have introduced the notion of optical parametric amplification based on non-Hermitian phase matching wherein the incorporation of loss can lead to gain in this nonlinear optical process. Previous simulation results using second-order nonlinear optical coupled-mode theory have demonstrated the potential of this technique as an alternative to the stringent phase-matching condition, which is often difficult to achieve in semiconductor platforms. Here we fortify this notion for the case of third-order nonlinearity by considering parametric amplification in silicon nanowires and illustrate the feasibility of these devices by employing rigorous finite-difference time-domain analysis using realistic materials and geometric parameters. Particularly, we demonstrate that by systematic control of the optical loss of the idler in a four-wave mixing process, we can achieve efficient unidirectional energy conversion from the pump to the signal component even when the typical phase-matching condition is violated. Importantly, our simulations show that a signal gain of∼<#comment/>9dBfor a waveguide length of a few millimeters is possible over a large bandwidth of several hundreds of nanometers (∼<#comment/>600nm). This bandwidth is nearly 2 orders of magnitude larger than what can be achieved in the conventionalmore »silicon-photonics-based four-wave mixing process.

    « less