skip to main content

Search for: All records

Creators/Authors contains: "Dadgostari, Faraz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In large agent-based models, it is difficult to identify the correlate system-level dynamics with individuallevel attributes. In this paper, we use inverse reinforcement learning to estimate compact representations of behaviors in large-scale pandemic simulations in the form of reward functions. We illustrate the capacity and performance of these representations identifying agent-level attributes that correlate with the emerging dynamics of large-scale multi-agent systems. Our experiments use BESSIE, an ABM for COVID-like epidemic processes, where agents make sequential decisions (e.g., use PPE/refrain from activities) based on observations (e.g., number of mask wearing people) collected when visiting locations to conduct their activities. The IRL-based reformulations of simulation outputs perform significantly better in classification of agent-level attributes than direct classification of decision trajectories and are thus more capable of determining agent-level attributes with definitive role in the collective behavior of the system. We anticipate that this IRL-based approach is broadly applicable to general ABMs. 
    more » « less