skip to main content

Search for: All records

Creators/Authors contains: "Daflon, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Open clusters are relatively young and numerous. These systems are distributed throughout the Galactic disc and provide insights on the chemistry of the Milky Way. In this study, we provide a near-infrared spectroscopic analysis of four stars of the young open cluster NGC 2345. Our infrared data present a resolving power of R ≈ 45 000, covering the H- and K-bands (1.5–2.5 μm), and high-signal-to-noise ratio, which are gathered with the Immersion Grating Infrared Spectrograph (IGRINS) at the Gemini Observatory. From atmospheric parameters previously derived via optical spectroscopy, we obtain abundances for C (12C16O), N (12C14N), O (16OH), F (H19F), Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, Cr, Fe, Ni, Ce, Nd, and Yb. Additionally, the 12C/13C (13C16O), 16O/17O (12C17O), and 16O/18O (12C18O) isotopic ratios are obtained. We compare the infrared results with a previous work based on optical spectral analysis, but chemical species such as F, S, P, K, and Yb are determined for the first time in stars of NGC 2345. We also confirm a low metallicity ([Fe/H]  =  −0.32 ± 0.04) and slight enrichment in s-process elements, as already noticed in works available in the literature, but we do not find any enrichment in F. Our results demonstrate excellent agreement between our measured isotopic ratios 12C/13C and 16C/17O and models of stellar nucleosynthesis, while we find that the abundance of 18O is overestimated in comparison to our measurements. Finally, we assess our findings in comparison to the chemical patterns observed in open clusters, classified by both their age and Galactocentric distances, and highlight the need for a more comprehensive sample of young clusters within the 9–11 kpc range for a proper comparison.

    more » « less

    In general, the atypical high velocity of some stars in the Galaxy can only be explained by invoking acceleration mechanisms related to extreme astrophysical events in the Milky Way. Using astrometric data from Gaia and the photometric information in 12 filters of the S-PLUS, we performed a kinematic, dynamical, and chemical analysis of 64 stars with Galactocentric velocities higher than 400 $\mathrm{km\, s}^{-1}$. All the stars are gravitationally bound to the Galaxy and exhibit halo kinematics. Some of the stars could be remnants of structures such as the Sequoia and the Gaia-Sausage/Enceladus. Supported by orbital and chemical analysis, we identified Gaia DR3 5401875170994688896 as a star likely to be originated at the centre of the Galaxy. Application of a machine learning technique to the S-PLUS photometric data allows us to obtain very good estimates of magnesium abundances for this sample of high-velocity stars.

    more » « less

    Previous results in the literature have found the young inner-disc open cluster NGC 6705 to be mildly α-enhanced. We examined this possibility via an independent chemical abundance analysis for 11 red-giant members of NGC 6705. The analysis is based on near-infrared APOGEE spectra and relies on LTE calculations using spherical model atmospheres and radiative transfer. We find a mean cluster metallicity of $\rm [Fe/H] = +0.13 \pm 0.04$, indicating that NGC 6705 is metal-rich, as may be expected for a young inner-disc cluster. The mean α-element abundance relative to iron is $\rm \langle [\alpha /Fe]\rangle =-0.03 \pm 0.05$, which is not at odds with expectations from general Galactic abundance trends. NGC 6705 also provides important probes for studying stellar mixing, given its turn-off mass of M ∼ 3.3 M⊙. Its red giants have low 12C abundances ([12C/Fe] = −0.16) and enhanced 14N abundances ([14N/Fe] = +0.51), which are key signatures of the first dredge-up on the red giant branch. An additional signature of dredge-up was found in the Na abundances, which are enhanced by [Na/Fe] = +0.29, with a very small non-LTE correction. The 16O and Al abundances are found to be near-solar. All of the derived mixing-sensitive abundances are in agreement with stellar models of approximately 3.3 M⊙ evolving along the red giant branch and onto the red clump. As found in young open clusters with similar metallicities, NGC 6705 exhibits a mild excess in the s-process element cerium with $\rm [Ce/Fe] = +0.13\pm 0.07$.

    more » « less
  4. Abstract We report 23 stars having Galactocentric velocities larger than 450 km s −1 in the final data release of the APOGEE survey. This sample was generated using space velocities derived by complementing the high-quality radial velocities from the APOGEE project in Sloan Digital Sky Survey’s Data Release 17 (DR17) with distances and proper motions from Gaia early Data Release 3 (eDR3). We analyze the observed kinematics and derived dynamics of these stars, considering different potential models for the Galaxy. We find that three stars could be unbound depending on the adopted potential, but in general all of the stars show typical kinematics of halo stars. The APOGEE DR17 spectroscopic results and Gaia eDR3 photometry are used to assess the stellar parameters and chemical properties of the stars. All of the stars belong to the red giant branch, and, in general, they follow the abundance pattern of typical halo stars. There are a few exceptions that would deserve further analysis through high-resolution spectroscopy. In particular, we identify a high-velocity Carbon-Enhanced Metal-Poor star, with a Galactocentric velocity of 482 km s −1 . We do not confirm any hypervelocity star in the sample, but this result is very sensitive to the adopted distances and less sensitive to the Galactic potential. 
    more » « less

    With a unique set of 54 overlapping narrow-band and two broader filters covering the entire optical range, the incoming Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will provide a great opportunity for stellar physics and near-field cosmology. In this work, we use the miniJPAS data in 56 J-PAS filters and 4 complementary SDSS-like filters to explore and prove the potential of the J-PAS filter system in characterizing stars and deriving their atmospheric parameters. We obtain estimates for the effective temperature with a good precision (<150 K) from spectral energy distribution fitting. We have constructed the metallicity-dependent stellar loci in 59 colours for the miniJPAS FGK dwarf stars, after correcting certain systematic errors in flat-fielding. The very blue colours, including uJAVA − r, J0378 − r, J0390 − r, uJPAS − r, show the strongest metallicity dependence, around 0.25 mag dex−1. The sensitivities decrease to about 0.1 mag dex−1 for the J0400 − r, J0410 − r, and J0420 − r colours. The locus fitting residuals show peaks at the J0390, J0430, J0510, and J0520 filters, suggesting that individual elemental abundances such as [Ca/Fe], [C/Fe], and [Mg/Fe] can also be determined from the J-PAS photometry. Via stellar loci, we have achieved a typical metallicity precision of 0.1 dex. The miniJPAS filters also demonstrate strong potential in discriminating dwarfs and giants, particularly the J0520 and J0510 filters. Our results demonstrate the power of the J-PAS filter system in stellar parameter determinations and the huge potential of the coming J-PAS survey in stellar and Galactic studies.

    more » « less
  6. Abstract The APOGEE Open Cluster Chemical Abundances and Mapping survey is used to probe the chemical evolution of the s-process element cerium in the Galactic disk. Cerium abundances were derived from measurements of Ce ii lines in the APOGEE spectra using the Brussels Automatic Code for Characterizing High Accuracy Spectra in 218 stars belonging to 42 open clusters. Our results indicate that, in general, for ages < 4 Gyr, younger open clusters have higher [Ce/Fe] and [Ce/ α -element] ratios than older clusters. In addition, metallicity segregates open clusters in the [Ce/X]–age plane (where X can be H, Fe, or the α -elements O, Mg, Si, or Ca). These metallicity-dependent relations result in [Ce/Fe] and [Ce/ α ] ratios with ages that are not universal clocks. Radial gradients of [Ce/H] and [Ce/Fe] ratios in open clusters, binned by age, were derived for the first time, with d [Ce/H]/ d R GC being negative, while d [Ce/Fe]/ d R GC is positive. [Ce/H] and [Ce/Fe] gradients are approximately constant over time, with the [Ce/Fe] gradient becoming slightly steeper, changing by ∼+0.009 dex kpc −1 Gyr −1 . Both the [Ce/H] and [Ce/Fe] gradients are shifted to lower values of [Ce/H] and [Ce/Fe] for older open clusters. The chemical pattern of Ce in open clusters across the Galactic disk is discussed within the context of s-process yields from asymptotic giant branch (AGB) stars, gigayear time delays in Ce enrichment of the interstellar medium, and the strong dependence of Ce nucleosynthesis on the metallicity of its AGB stellar sources. 
    more » « less