skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Daftari, Katherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Green, John Edward (Ed.)
    Emergent behavior in active systems is a complex byproduct of local, often pairwise, interactions. One such interaction is self-avoidance, which experimentally can arise as a response to self-generated environmental signals; such experiments have inspired non-Markovian mathematical models. In previous work, we set out to find “hallmarks of self-avoidant memory in a particle model for environmentally responsive swimming droplets. In our analysis, we found that transient self-trapping was a spatial hallmark of the particle’s self-avoidant memory response. The self-trapping results from the combined effects of behaviors at multiple scales: random reorientations, which occur on the diffusion scale, and the self-avoidant memory response, which occurs on the ballistic (and longer) timescales. In this work, we use the path curvature as it encodes the self-trapping response to estimate an “effective memory lifetime by analyzing the decay of its time-delayed mutual information and subsequently determining the longevity of significant nonlinear correlations. This effective memory lifetime (EML) is longer in systems where the curvature is a product of both self-avoidance and random reorientations as compared to systems without self-avoidance. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026