Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Minifilaments are widespread small-scale structures in the solar atmosphere. To better understand their formation and eruption mechanisms, we investigate the entire life of a sigmoidal minifilament located below a large quiescent filament observed by Big Bear Solar Observatory/Goode Solar Telescope on 2015 August 3. The Hαstructure initially appears as a group of arched threads, then transforms into two J-shaped arcades, and finally forms a sigmoidal shape. Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly observations in 171 Å show that two coronal jets occur around the southern footpoint of the minifilament before the minifilament eruption. The minifilament eruption starts from the southern footpoint, then interacts with the overlying filament and fails. The aforementioned observational changes correspond to three episodes of flux cancellations observed by SDO/Helioseismic and Magnetic Imager. Unlike previous studies, the flux cancellation occurs between the polarity where the southern footpoint of the minifilament is rooted and an external polarity. We construct two magnetic field models before the eruption using the flux rope insertion method and find a hyperbolic flux tube above the flux cancellation site. The observation and modeling results suggest that the eruption is triggered by the external magnetic reconnection between the core field of the minifilament and the external fields due to flux cancellations. This study reveals a new triggering mechanism for minifilament eruptions and a new relationship between minifilament eruptions and coronal jets.more » « less
-
Many applications deployed to public clouds are concerned about the confidentiality of their outsourced data, such as financial services and electronic patient records. A plausible solution to this problem is homomorphic encryption (HE), which supports certain algebraic operations directly over the ciphertexts. The downside of HE schemes is their significant, if not prohibitive, performance overhead for data-intensive workloads that are very common for outsourced databases, or database-as-a-serve in cloud computing. The objective of this work is to mitigate the performance overhead incurred by the HE module in outsourced databases. To that end, this paper proposes a radix-based parallel caching optimization for accelerating the performance of homomorphic encryption (HE) of outsourced databases in cloud computing. The key insight of the proposed optimization is caching selected radix-ciphertexts in parallel without violating existing security guarantees of the primitive/base HE scheme. We design the radix HE algorithm and apply it to both batch- and incremental-HE schemes; we demonstrate the security of those radix-based HE schemes by showing that the problem of breaking them can be reduced to the problem of breaking their base HE schemes that are known IND-CPA (i.e. Indistinguishability under Chosen-Plaintext Attack). We implement the radix-based schemes as middleware of a 10-node Cassandra cluster on CloudLab; experiments on six workloads show that the proposed caching can boost state-of-the-art HE schemes, such as Paillier and Symmetria, by up to five orders of magnitude.more » « less
-
Abstract BackgroundThe paucity of SARS-CoV-2-specific virulence factors has greatly hampered the therapeutic management of patients with COVID-19 disease. Although available vaccines and approved therapies have shown tremendous benefits, the continuous emergence of new variants of SARS-CoV-2 and side effects of existing treatments continue to challenge therapy, necessitating the development of a novel effective therapy. We have previously shown that our developed novel single-stranded DNA aptamers not only target the trimer S protein of SARS-CoV-2, but also block the interaction between ACE2 receptors and trimer S protein of Wuhan origin, Delta, Delta plus, Alpha, Lambda, Mu, and Omicron variants of SARS-CoV-2. We herein performed in vivo experiments that administer the aptamer to the lungs by intubation as well as in vitro studies utilizing PBMCs to prove the efficacy and safety of our most effective aptamer, AYA2012004_L. MethodsIn vivo studies were conducted in transgenic mice expressing human ACE2 (K18hACE2), C57BL/6J, and Balb/cJ. Flow cytometry was used to check S-protein expressing pseudo-virus-like particles (VLP) uptake by the lung cells and test the immuogenicity of AYA2012004_L. Ames test was used to assess mutagenicity of AYA2012004_L. RT-PCR and histopathology were used to determine the biodistribution and toxicity of AYA2012004_L in vital organs of mice. ResultsWe measured the in vivo uptake of VLPs by lung cells by detecting GFP signal using flow cytometry. AYA2012004_L specifically neutralized VLP uptake and also showed no inflammatory response in mice lungs. In addition, AYA2012004_L did not induce inflammatory response in the lungs of Th1 and Th2 mouse models as well as human PBMCs. AYA2012004_L was detectable in mice lungs and noticeable in insignificant amounts in other vital organs. Accumulation of AYA2012004_L in organs decreased over time. AYA2012004_L did not induce degenerative signs in tissues as seen by histopathology and did not cause changes in the body weight of mice. Ames test also certified that AYA2012004_L is non-mutagenic and proved it to be safe for in vivo studies. ConclusionsOur aptamer is safe, effective, and can neutralize the uptake of VLPs by lung cells when administered locally suggesting that it can be used as a potential therapeutic agent for COVID-19 management.more » « less
-
SecTutor is a tutoring system that uses adaptive testing to select instructional modules that allow users to pursue secure programming knowledge at their own pace. This project aims to combat one of the most significant cybersecurity challenges we have today: individuals' failure to practice defensive, secure, and robust programming. To alleviate this, we introduce SecTutor, an adaptive online tutoring system, to help developers understand the foundational concepts behind secure programming. SecTutor allows learners to pursue knowledge at their own pace and according to their own interests, based on assessments that identify and structure educational modules based on their current level of understanding.more » « less
-
Abstract We present an investigation of partial filament eruption on 2012 June 17 in the active region NOAA 11504. For the first time, we observed the vertical splitting process during the partial eruption with high-resolution narrowband images at 10830 Å. The active filament was rooted in a smallδ-sunspot of the active region. Particularly, it underwent the partial eruption in three steps, i.e., the precursor, the first eruption, and the second eruption, while the latter two were associated with a C1.0 flare and a C3.9 flare, respectively. During the precursor, slow magnetic reconnection took place between the filament and the adjoining loops that also rooted in theδ-sunspot. The continuous reconnection not only caused the filament to split into three groups of threads vertically but also formed a new filament, which was growing and accompanied brightening took place around the site. Subsequently, the growing filament erupted together with one group splitted threads, resulted in the first eruption. At the beginning of the first eruption, a subsequent magnetic reconnection occurred between the erupting splitted threads and another ambient magnetic loop. After about 3 minutes, the second eruption occurred as a result of the eruption of two larger unstable filaments induced by the magnetic reconnection. The high-resolution observation provides a direct evidence that magnetic reconnection between filament and its ambient magnetic fields could induce the vertical splitting of the filament, resulting in partial eruption.more » « less
An official website of the United States government
