skip to main content

Search for: All records

Creators/Authors contains: "Dai, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes a data-driven framework to address the worst-case estimation problem for switched discrete-time linear systems based solely on the measured data (input & output) and an ℓ ∞ bound over the noise. We start with the problem of designing a worst-case optimal estimator for a single system and show that this problem can be recast as a rank minimization problem and efficiently solved using standard relaxations of rank. Then we extend these results to the switched case. Our main result shows that, when the mode variable is known, the problem can be solved proceeding in a similar manner.more »To address the case where the mode variable is unmeasurable, we impose the hybrid decoupling constraint(HDC) in order to reformulate the original problem as a polynomial optimization which can be reduced to a tractable convex optimization using moments-based techniques.« less
  2. Next generation wireless and mobile networks will utilize millimeter-wave (mmWave) communication to achieve significantly increased data rates. However, since mmWave radio signals experience high path loss, the operation of mmWave networks will require accurate channel models designed for specific deployment sites. In this paper, we focus on the deployment area of the PAWR COSMOS testbed [1, 2] in New York City and report extensive 28 GHz channel measurements. These include over 24 million power measurements collected from over 1,500 links on 13 sidewalks in 3 different sites and in different settings during March–June, 2019. Using these measurements, we study themore »effects of the setup and environments (e.g., transmitter height and seasonal effects). We then discuss the obtained path gain values and their fitted lines, and the resulting effective azimuth beamforming gain. Based on these results, we also study the link SNR values that can be supported on individual sidewalks and the corresponding theoretically achievable data rates. We believe that the results can inform the COSMOS testbed deployment process and provide a benchmark for other deployment efforts in dense urban areas.« less