skip to main content

Search for: All records

Creators/Authors contains: "Dai, X."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2023
  2. Free, publicly-accessible full text available January 1, 2023
  3. Neuroimaging data typically undergoes several preprocessing steps before further analysis and mining can be done. Affine image registration is one of the important tasks during preprocessing. Recently, several image registration methods which are based on Convolutional Neural Networks have been proposed. However, due to the high computational and memory requirements of CNNs, these methods cannot be used in real-time for large neuroimaging data like fMRI. In this paper, we propose a Dual-Attention Recurrent Network (DRN) which uses a hard attention mechanism to allow the model to focus on small, but task-relevant, parts of the input image – thus reducing computationalmore »and memory costs. Furthermore, DRN naturally supports inhomogeneity between the raw input image (e.g., functional MRI) and the image we want to align it to (e.g., anatomical MRI) so it can be applied to harder registration tasks such as fMRI coregistration and normalization. Extensive experiments on two different datasets demonstrate that DRN significantly reduces the computational and memory costs compared with other neural network-based methods without sacrificing the quality of image registration« less
  4. Attention-based image classification has gained increasing popularity in recent years. State-of-the-art methods for attention-based classification typically require a large training set and operate under the assumption that the label of an image depends solely on a single object (i.e., region of interest) in the image. However, in many real-world applications (e.g., medical imaging), it is very expensive to collect a large training set. Moreover, the label of each image is usually determined jointly by multiple regions of interest (ROIs). Fortunately, for such applications, it is often possible to collect the locations of the ROIs in each training image. In thismore »paper, we study the problem of guided multi-attention classification, the goal of which is to achieve high accuracy under the dual constraints of (1) small sample size, and (2) multiple ROIs for each image. We propose a model, called Guided Attention Recurrent Network (GARN), for multi-attention classification. Different from existing attention-based methods, GARN utilizes guidance information regarding multiple ROIs thus allowing it to work well even when sample size is small. Empirical studies on three different visual tasks show that our guided attention approach can effectively boost model performance for multi-attention image classification.« less
  5. With the rapid development of social media, visual sentiment analysis from image or video has become a hot spot in visual understanding researches. In this work, we propose an effective approach using visual and textual fusion for sentiment analysis of short GIF videos with textual descriptions. We extract both sequence-level and frame-level visual features for each given GIF video. Next, we build a visual sentiment classifier by using the extracted features. We also define a mapping function, which converts the sentiment probability from the classifier to a sentiment score used in our fusion function. At the same time, for themore »accompanying textual annotations, we employ the Synset forest to extract the sets of the meaningful sentiment words and utilize the SentiWordNet3.0 model to obtain the textual sentiment score. Then, we design a joint visual-textual sentiment score function weighted with visual sentiment component and textual sentiment one. To make the function more robust, we introduce a noticeable difference threshold to further process the fused sentiment score. Finally, we adopt a grid search technique to obtain relevant model hyper-parameters by optimizing a sentiment aware score function. Experimental results and analysis extensively demonstrate the effectiveness of the proposed sentiment recognition scheme on three benchmark datasets including the TGIF dataset, GSO-2016 dataset, and Adjusted-GIFGIF dataset.« less