skip to main content

Search for: All records

Creators/Authors contains: "Dale, D. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report the results of long-term reverberation mapping campaigns of the nearby active galactic nuclei (AGNs) NGC 4151, spanning from 1994 to 2022, based on archived observations of the FAST Spectrograph Publicly Archived Programs and our new observations with the 2.3 m telescope at the Wyoming Infrared Observatory. We reduce and calibrate all the spectra in a consistent way, and derive light curves of the broad H β line and 5100 Å continuum. Continuum light curves are also constructed using public archival photometric data to increase sampling cadences. We subtract the host galaxy contamination using Hubble Space Telescope imaging to correct fluxes of the calibrated light curves. Utilizing the long-term archival photometric data, we complete the absolute flux-calibration of the AGN continuum. We find that the H β time delays are correlated with the 5100 Å luminosities as $\tau _{\rm H\beta }\propto L_{5100}^{0.46\pm 0.16}$. This is remarkably consistent with Bentz et al. (2013)’s global size–luminosity relationship of AGNs. Moreover, the data sets for five of the seasons allow us to obtain the velocity-resolved delays of the H β line, showing diverse structures (outflows, inflows, and discs). Combining our results with previous independent measurements, we find the measured dynamics of the H β broad-line region (BLR) are possiblymore »related to the long-term trend of the luminosity. There is also a possible additional ∼1.86 yr time lag between the variation in BLR radius and luminosity. These results suggest that dynamical changes in the BLR may be driven by the effects of radiation pressure.

    « less
  2. ABSTRACT The feedback from young stars (i.e. pre-supernova) is thought to play a crucial role in molecular cloud destruction. In this paper, we assess the feedback mechanisms acting within a sample of 5810 H ii regions identified from the PHANGS-MUSE survey of 19 nearby (<20 Mpc) star-forming, main-sequence spiral galaxies [log(M⋆/M⊙) = 9.4–11]. These optical spectroscopic maps are essential to constrain the physical properties of the H ii regions, which we use to investigate their internal pressure terms. We estimate the photoionized gas (Ptherm), direct radiation (Prad), and mechanical wind pressure (Pwind), which we compare to the confining pressure of their host environment (Pde). The H ii regions remain unresolved within our ∼50–100 pc resolution observations, so we place upper (Pmax) and lower (Pmin) limits on each of the pressures by using a minimum (i.e. clumpy structure) and maximum (i.e. smooth structure) size, respectively. We find that the Pmax measurements are broadly similar, and for Pmin the Ptherm is mildly dominant. We find that the majority of H ii regions are overpressured, Ptot/Pde = (Ptherm + Pwind + Prad)/Pde > 1, and expanding, yet there is a small sample of compact H ii regions with Ptot,max/Pde < 1 (∼1 per cent of the sample). These mostly reside in galaxymore »centres (Rgal < 1 kpc), or, specifically, environments of high gas surface density; log(Σgas/M⊙ pc−2) ∼ 2.5 (measured on kpc-scales). Lastly, we compare to a sample of literature measurements for Ptherm and Prad to investigate how dominant pressure term transitions over around 5 dex in spatial dynamic range and 10 dex in pressure.« less