skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Daltorio, Kathryn A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper details the development and validation of a dynamic 3D compliant worm-like robot model controlled by a Synthetic Nervous System (SNS). The model was built and simulated in the physics engine Mujoco which is able to approximate soft bodied dynamics and generate contact, gravitational, frictional, and internal forces. These capabilities allow the model to realistically simulate the movements and dynamic behavior of a physical soft-bodied worm-robot. For validation, the results of this simulation were compared to data gathered from a physical worm robot and found to closely match key behaviors such as deformation propagation along the compliant structure and actuator efficiency losses in the middle segments. The SNS controller was previously developed for a simple 2D kinematic model and has been successfully implemented on this 3D model with little alteration. It uses coupled oscillators to generate coordinated actuator control signals and induce peristaltic locomotion. This model will be useful for analyzing dynamic effects during peristaltic locomotion like contact forces and slip as well as developing and improving control algorithms that avoid unwanted slip. 
    more » « less
  2. Creating burrows through natural soils and sediments is a problem that evolution has solved numerous times, yet burrowing locomotion is challenging for biomimetic robots. As for every type of locomotion, forward thrust must overcome resistance forces. In burrowing, these forces will depend on the sediment mechanical properties that can vary with grain size and packing density, water saturation, organic matter and depth. The burrower typically cannot change these environmental properties, but can employ common strategies to move through a range of sediments. Here we propose four challenges for burrowers to solve. First, the burrower has to create space in a solid substrate, overcoming resistance by e.g., excavation, fracture, compression, or fluidization. Second, the burrower needs to locomote into the confined space . A compliant body helps fit into the possibly irregular space, but reaching the new space requires non-rigid kinematics such as longitudinal extension through peristalsis, unbending, or eversion. Third, to generate the required thrust to overcome resistance, the burrower needs to anchor within the burrow . Anchoring can be achieved through anisotropic friction or radial expansion, or both. Fourth, the burrower must sense and navigate to adapt the burrow shape to avoid or access different parts of the environment. Our hope is that by breaking the complexity of burrowing into these component challenges, engineers will be better able to learn from biology, since animal performance tends to exceed that of their robotic counterparts. Since body size strongly affects space creation, scaling may be a limiting factor for burrowing robotics, which are typically built at larger scales. Small robots are becoming increasingly feasible, and larger robots with non-biologically-inspired anteriors (or that traverse pre-existing tunnels) can benefit from a deeper understanding of the breadth of biological solutions in current literature and to be explored by continued research. 
    more » « less
  3. Specifying leg placement is a key element for legged robot control, however current methods for specifying individual leg motions with human-robot interfaces require mental concentration and the use of both arm muscles. In this paper, a new control interface is discussed to specify leg placement for hexapod robot by using finger motions. Two mapping methods are proposed and tested with lab staff, Joint Angle Mapping (JAM) and Tip Position Mapping (TPM). The TPM method was shown to be more efficient. Then a manual controlled gait based on TPM is compared with fixed gait and camera-based autonomous gait in a Webots simulation to test the obstacle avoidance performance on 2D terrain. Number of Contacts (NOC) for each gait are recorded during the tests. The results show that both the camera-based autonomous gait and the TPM are effective methods in adjusting step size to avoid obstacles. In high obstacle density environments, TPM reduces the number of contacts to 25% of the fixed gaits, which is even better than some of the autonomous gaits with longer step size. This shows that TPM has potential in environments and situations where autonomous footfall planning fails or is unavailable. In future work, this approach can be improved by combining with haptic feedback, additional degrees of freedom and artificial intelligence. 
    more » « less
  4. Worm-like robots have demonstrated great potential in navigating through environments requiring body shape deformation. Some examples include navigating within a network of pipes, crawling through rubble for search and rescue operations, and medical applications such as endoscopy and colonoscopy. In this work, we developed path planning optimization techniques and obstacle avoidance algorithms for the peristaltic method of locomotion of worm-like robots. Based on our previous path generation study using a modified rapidly exploring random tree (RRT), we have further introduced the Bézier curve to allow more path optimization flexibility. Using Bézier curves, the path planner can explore more areas and gain more flexibility to make the path smoother. We have calculated the obstacle avoidance limitations during turning tests for a six-segment robot with the developed path planning algorithm. Based on the results of our robot simulation, we determined a safe turning clearance distance with a six-body diameter between the robot and the obstacles. When the clearance is less than this value, additional methods such as backward locomotion may need to be applied for paths with high obstacle offset. Furthermore, for a worm-like robot, the paths of subsequent segments will be slightly different than the path of the head segment. Here, we show that as the number of segments increases, the differences between the head path and tail path increase, necessitating greater lateral clearance margins. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Earthworm-like peristaltic locomotion has been implemented in >50 robots, with many potential applications in otherwise inaccessible terrain. Design guidelines for peristaltic locomotion have come from observations of biology, but robots have empirically explored different structures, actuators, and control waveform shapes than those observed in biological organisms. In this study, we suggest a template analysis based on simplified segments undergoing beam deformations. This analysis enables calculation of the minimum power required by the structure for locomotion and maximum speed of locomotion. Thus, design relationships are shown that apply to peristaltic robots and potentially to earthworms. Specifically, although speed is maximized by moving as many segments as possible, cost of transport (COT) is optimized by moving fewer segments. Furthermore, either soft or relatively stiff segments are possible, but the anisotropy of the stiffnesses is important. Experimentally, we show on our earthworm robot that this method predicts which control waveforms (equivalent to different gaits) correspond to least input power or to maximum velocity. We extend our analysis to 150 segments (similar to that of earthworms) to show that reducing COT is an alternate explanation for why earthworms have so few moving segments. The mathematical relationships developed here between structural properties, actuation power, and waveform shape will enable the design of future robots with more segments and limited onboard power. 
    more » « less
  7. null (Ed.)
    Inspired by earthworms, worm-like robots use peristaltic waves to locomote. While there has been research on generating and optimizing the peristalsis wave, path planning for such worm-like robots has not been well explored. In this paper, we evaluate rapidly exploring random tree (RRT) algorithms for path planning in worm-like robots. The kinematics of peristaltic locomotion constrain the potential for turning in a non-holonomic way if slip is avoided. Here we show that adding an elliptical path generating algorithm, especially a two-step enhanced algorithm that searches path both forward and backward simultaneously, can make planning such waves feasible and efficient by reducing required iterations by up around 2 orders of magnitude. With this path planner, it is possible to calculate the number of waves to get to arbitrary combinations of position and orientation in a space. This reveals boundaries in configuration space that can be used to determine whether to continue forward or back-up before maneuvering, as in the worm-like equivalent of parallel parking. The high number of waves required to shift the body laterally by even a single body width suggests that strategies for lateral motion, planning around obstacles and responsive behaviors will be important for future worm-like robots. 
    more » « less
  8. Soft-bodied animals, such as earthworms, are capable of contorting their body to squeeze through narrow spaces, create or enlarge burrows, and move on uneven ground. In many applications such as search and rescue, inspection of pipes and medical procedures, it may be useful to have a hollow-bodied robot with skin separating inside and outside. Textiles can be key to such skins. Inspired by earthworms, we developed two new robots: FabricWorm and MiniFabricWorm. We explored the application of fabric in soft robotics and how textile can be integrated along with other structural elements, such as three-dimensional (3D) printed parts, linear springs, and flexible nylon tubes. The structure of FabricWorm consists of one third the number of rigid pieces as compared to its predecessor Compliant Modular Mesh Worm-Steering (CMMWorm-S), while the structure of MiniFabricWorm consists of no rigid components. This article presents the design of such a mesh and its limitations in terms of structural softness. We experimentally measured the stiffness properties of these robots and compared them directly to its predecessors. FabricWorm and MiniFabricWorm are capable of peristaltic locomotion with a maximum speed of 33 cm/min (0.49 body-lengths/min) and 13.8 cm/min (0.25 body-lengths/min), respectively. 
    more » « less
  9.  
    more » « less