- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bose, Sougato (1)
-
Dana, Andrew (1)
-
Geraci, Andrew (1)
-
Grinin, Alexey (1)
-
Mazumdar, Anupam (1)
-
Schut, Martine (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To test the quantum nature of gravity in a laboratory requires witnessing the entanglement between the two test masses (nanocrystals) solely due to the gravitational interaction kept at a distance in a spatial superposition. The protocol is known as the quantum-gravity-induced entanglement of masses (QGEM). One of the main backgrounds in the QGEM experiment is electromagnetic (EM) -induced entanglement and decoherence. The EM interactions can entangle the two neutral masses via dipole-dipole vacuum-induced interactions, such as the Casimir-Polder interaction. To mitigate the EM-induced interactions between the two nanocrystals, we enclose the two interferometers in a Faraday cage and separate them by a conducting plate. However, any imperfection on the surface of a nanocrystal, such as a permanent dipole moment, will also create an EM background interacting with the conducting plate in the experimental box. These interactions will further generate EM-induced dephasing, which we wish to mitigate. In this paper, we will consider a parallel configuration of the QGEM experiment, where we will estimate the EM-induced dephasing rate and run-by-run systematic errors which will induce dephasing, and also provide constraints on the size of the superposition in a model-independent way of creating the spatial superposition.more » « less
An official website of the United States government
