skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Daniels, Jaret C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    The sky islands of southeastern Arizona (AZ) mark a major transition zone between tropical and temperate biota and are considered a neglected biodiversity hotspot. Dispersal ability and host plant specificity are thought to impact the history and diversity of insect populations across the sky islands. We aimed to investigate the population structure and phylogeography of two pine‐feeding pierid butterflies, the pine white (Neophasia menapia) and the Mexican pine white (Neophasia terlooii), restricted to these “islands” at this transition zone. Given their dependence on pines as the larval hosts, we hypothesized that habitat connectivity affects population structure and is at least in part responsible for their allopatry. We sampled DNA from freshly collected butterflies from 17 sites in the sky islands and adjacent high‐elevation habitats and sequenced these samples using ddRADSeq. Up to 15,399 SNPs were discovered and analyzed in population genetic and phylogenetic contexts with Stacks and pyRAD pipelines. Low genetic differentiation inN. menapiasuggests that it is panmictic. Conversely, there is strong evidence for population structure withinN. terlooii. Each sky island likely contains a population ofN. terlooii, and clustering is hierarchical, with populations on proximal mountains being more related to each other. TheN. menapiahabitat, which is largely contiguous, facilitates panmixia, while theN. terlooiihabitat, restricted to the higher elevations on each sky island, creates distinct population structure. Phylogenetic results corroborate those from population genetic analyses. The historical climate‐driven fluxes in forest habitat connectivity have implications for understanding the biodiversity of fragmented habitats.

    more » « less