skip to main content


Search for: All records

Creators/Authors contains: "Darensbourg, Donald J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synthetic transformation of d -xylose into a four-membered cyclic ether allows for reactions with carbon dioxide (CO 2 ) leading to linear polycarbonates by either a one-step ring-opening copolymerisation (ROCOP) directly, or by sequential isolation of a preformed six-membered cyclic carbonate followed by ring-opening polymerisation (ROP). 
    more » « less
  2. Abstract

    With the goal of generating hetero‐redox levels on metals as well as on nitric oxide (NO), metallodithiolate (N2S2)CoIII(NO), N2S2=N,N‐ dibenzyl‐3,7‐diazanonane‐1,9‐dithiolate, is introduced as ligand to a well‐characterized labile [Ni0(NO)+] synthon. The reaction between [Ni0(NO+)] and [CoIII(NO)] has led to a remarkable electronic and ligand redistribution to form a heterobimetallic dinitrosyl cobalt [(N2S2)NiII∙Co(NO)2]+complex with formal two electron oxidation state switches concomitant with the nickel extraction or transfer as NiIIinto the N2S2ligand binding site. To date, this is the first reported heterobimetallic cobalt dinitrosyl complex.

     
    more » « less
  3. null (Ed.)
    The synthesis of poly(propylene carbonate) with 100% 13C-labeled carbonate carbons is reported. The 𝑣CO3 vibration is shifted 45 cm−1 lower than that observed in its 12C analog. This lowering of the 𝑣CO3 vibrational mode of the copolymer provides a window for observing νNO stretching motions in incorporated dinitrosyl iron complexes. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Carbon dioxide based polymers synthesized from the metal-catalyzed copolymeriation of epoxides and CO 2 containing the terpyridine ligand as an end group are reported. The strategy used was to carry out the polymerization in the presence of a carboxylic acid derivative of terpyridine, 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine (HL), as a chain transfer agent. The epoxide monomer possessing a vinyl substituent, allyl glycidyl ether (AGE), was copolymerized with CO 2 employing a (salen)Co( iii ) catalyst to afford a polycarbonate which upon the addition of mercaptoacetic acid across the double bond, followed by deprotonation, yielded a water soluble polymer. In a similar manner, the sequential formation of a diblock terpolymer produced from propylene oxide, AGE, and CO 2 provided a amphiphilic polycarbonate which self-assembled upon addition to water to form micelle nanostructures. The molecular weights of these CO 2 -derived polycarbonates were shown to be easily controlled by the quantity of chain transfer agent used. These polymeric ligands were demonstrated to provide a modular design for synthesizing a wide variety of metal complexes as illustrated herein for zinc and platinum derivatives. 
    more » « less
  6. null (Ed.)