skip to main content

Search for: All records

Creators/Authors contains: "Darrow, Margaret M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In early December 2020, an atmospheric river (AR) and rain-on-snow (ROS) event impacted the Haines, Alaska area, resulting in record-breaking rainfall and snowmelt that caused flooding and dozens of mass movement events. We consider the AR—a one-in-500-year event—as the trigger for the devastating Beach Road Landslide (BRLS), which destroyed or damaged four residences and took the lives of two people. The BRLS started as a debris avalanche and transitioned into a debris flow, with a total approximate landslide volume of 187,100 m3. Geomorphic analysis using lidar data identified evidence of paleo-landslides and displaced masses of rock, one of which served as the source area for the BRLS. Significant structural features in the weak ultramafic bedrock defined the head scarp area and formed the failure plane. This study illustrates the importance of identifying pre-existing landslide features and source areas likely to produce future landslides. As an increase in ROS events is projected for Southeast Alaska with warmer and wetter winters, we recommend the development of an AR scale coupled with geological information for the region, to enhance warnings to residents in landslide-prone areas.

  2. Abstract

    Abrupt thaw of ice‐rich permafrost in the Arctic Foothills yielded to the formation of hillslope erosional features. In the infrastructure corridor, we observed thermal erosion and thaw slumping that self‐healed near an embankment. To advance our understanding of processes between infrastructure and hillslope erosional features (INF‐HEF), we combined climate and remote sensing analyses to field investigations to assess an INF‐HEF system and validate our findings in a broader area along the infrastructure corridor. We identified that thaw consolidation along an embankment formed a thermokarst ditch that was ubiquitous in the broader study area, and which was extensively affected by shrubification and supported other positive feedback (e.g., snow accumulation, water impoundment, and weakened vegetation mat). The thermokarst ditch facilitated channelization of cross‐drainage water, thus increasing the terrain vulnerability to thermal erosion that evolved into thaw slumping after heavy rainfalls. The terrain resilience to thaw slumping benefited from the type of ground ice and topography prevailing at our site. The lateral discontinuity of massive ice in an ice‐wedge polygonal system (i.e., interchange soil and massive ice) compounded to a low‐slope gradient with topographic obstacles (e.g., baydzherakhs) decreased slumping activity and supported self‐stabilization.

    Free, publicly-accessible full text available April 18, 2024