Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Microservice Architecture (MSA) is rapidly taking over modern software engineering and becoming the predominant architecture of new cloud-based applications (apps). There are many advantages to using MSA, but there are many downsides to using a more complex architecture than a typical monolithic enterprise app. Beyond the normal bad coding practices and code-smells of a typical app, MSA specific code-smells are difficult to discover within a distributed app. There are many static code analysis tools for monolithic apps, but no tool exists to offer code-smell detection for MSA-based apps. This paper proposes a new approach to detect code smells in distributedmore »
-
This article, for the first time, demonstrates Cross-device Deep Learning Side-Channel Attack (X-DeepSCA), achieving an accuracy of > 99.9%, even in presence of significantly higher inter-device variations compared to the inter-key variations. Augmenting traces captured from multiple devices for training and with proper choice of hyper-parameters, the proposed 256-class Deep Neural Network (DNN) learns accurately from the power side-channel leakage of an AES-128 target encryption engine, and an N-trace (N ≤ 10) X-DeepSCA attack breaks different target devices within seconds compared to a few minutes for a correlational power analysis (CPA) attack, thereby increasing the threat surface for embedded devicesmore »
-
Heterochromatin is mostly composed of long stretches of repeated DNA sequences prone to ectopic recombination during double-strand break (DSB) repair. In Drosophila, “safe” homologous recombination (HR) repair of heterochromatic DSBs relies on a striking relocalization of repair sites to the nuclear periphery. Central to understanding heterochromatin repair is the ability to investigate the 4D dynamics (movement in space and time) of repair sites. A specific challenge of these studies is preventing phototoxicity and photobleaching effects while imaging the sample over long periods of time, and with sufficient time points and Z-stacks to track repair foci over time. Here we describemore »
-
Free, publicly-accessible full text available August 1, 2022
-
Free, publicly-accessible full text available September 1, 2022
-
Free, publicly-accessible full text available August 1, 2022
-
Free, publicly-accessible full text available August 1, 2022
-
Abstract The multiplicity dependence of the pseudorapidity density of charged particles in proton–proton (pp) collisions at centre-of-mass energies $$\sqrt{s}~=~5.02$$ s = 5.02 , 7 and 13 TeV measured by ALICE is reported. The analysis relies on track segments measured in the midrapidity range ( $$|\eta | < 1.5$$ | η | < 1.5 ). Results are presented for inelastic events having at least one charged particle produced in the pseudorapidity interval $$|\eta |<1$$ | η | < 1 . The multiplicity dependence of the pseudorapidity density of charged particles is measured with mid- and forward rapidity multiplicity estimators, the lattermore »