skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Das, Mahashweta"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of test-time adaptation of predictive models trained on tabular data. Effective solution of this problem requires adaptation of predictive models trained on the source domain to a target domain, using only unlabeled target domain data, without access to source domain data. Existing test-time adaptation methods for tabular data have difficulty coping with the heterogeneous features and their complex dependencies inherent in tabular data. To overcome these limitations, we consider test-time adaptation in the setting wherein the logical structure of the rules is assumed to remain invariant despite distribution shift between source and target domains whereas the numerical parameters associated with the rules and the weights assigned to them can vary to accommodate distribution shift. TabLog discretizes numerical features, models dependencies between heterogeneous features, introduces a novel contrastive loss for coping with distribution shift, and presents an end-to-end framework for efficient training and test-time adaptation by taking advantage of a logical neural network representation of a rule ensemble. We present results of experiments using several benchmark data sets that demonstrate TabLog is competitive with or improves upon the state-of-the-art methods for testtime adaptation of predictive models trained on tabular data. Our code is available at https:// github.com/WeijieyingRen/TabLog. 
    more » « less
    Free, publicly-accessible full text available July 16, 2025
  2. Knowledge graph question answering aims to identify answers of the query according to the facts in the knowledge graph. In the vast majority of the existing works, the input queries are considered perfect and can precisely express the user’s query intention. However, in reality, input queries might be ambiguous and elusive which only contain a limited amount of information. Directly answering these ambiguous queries may yield unwanted answers and deteriorate user experience. In this paper, we propose PReFNet which focuses on answering ambiguous queries with pseudo relevance feedback on knowledge graphs. In order to leverage the hidden (pseudo) relevance information existed in the results that are initially returned from a given query, PReFNet treats the top-k returned candidate answers as a set of most relevant answers, and uses variational Bayesian inference to infer user’s query intention. To boost the quality of the inferred queries, a neighborhood embedding based VGAE model is used to prune inferior inferred queries. The inferred high quality queries will be returned to the users to help them search with ease. Moreover, all the high-quality candidate nodes will be re-ranked according to the inferred queries. The experiment results show that our proposed method can recommend high-quality query graphs to users and improve the question answering accuracy. 
    more » « less