skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dave, Utsav D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Total internal reflection (TIR) governs the guiding mechanisms of almost all dielectric waveguides and therefore constrains most of the light in the material with the highest refractive index. The few options available to access the properties of lower-index materials include designs that are either lossy, periodic, exhibit limited optical bandwidth or are restricted to subwavelength modal volumes. Here, we propose and demonstrate a guiding mechanism that leverages symmetry in multilayer dielectric waveguides as well as evanescent fields to strongly confine light in low-index materials. The proposed waveguide structures exhibit unusual light properties, such as uniform field distribution with a non-Gaussian spatial profile and scale invariance of the optical mode. This guiding mechanism is general and can be further extended to various optical structures, employed for different polarizations, and in different spectral regions. Therefore, our results can have huge implications for integrated photonics and related technologies. 
    more » « less
  2. We demonstrate the loading of very short optical pulses into a high-Q cavity with linewidth much narrower than the pulse frequency envelope. We show that loading into the cavity is significantly enhanced if the pulse is combined with a cw-field, thus altering the pulse frequency profile to better match the cavity profile. 
    more » « less
  3. We apply the homomorphism between the Schrödinger and Helmholtz-Maxwell wave equations to experimentally demonstrate an integrated photonic analogue of the zero-curvature eigenfunctions predicted in quantum mechanics. 
    more » « less
  4. We experimentally demonstrate waveguiding at the critical angle in a dielectric multi-layered structure. At this exceptional point, the waveguide becomes scale invariant and the field is confined to the low-index region, with a spatially-uniform transverse profile 
    more » « less
  5. We demonstrate passive PT symmetry breaking between the spatial modes within a single SOI waveguide with metal deposited directly on top. By leveraging this effect, we show low propagation loss of < 1 dB for a 100 μm long, 10 μm wide waveguide partially covered with 100 nm thick metal. 
    more » « less
  6. We demonstrate robust mode conversion up to the 12th higher order mode in silicon waveguides by using an optimized adiabatic directional coupler and using subwavelength waveguides. The conversion efficiency is better than -1.5 dB over a 75 nm bandwidth and tolerating ±30 nm fabrication variations. 
    more » « less
  7. Abstract Low propagation loss in high confinement waveguides is critical for chip‐based nonlinear photonics applications. Sophisticated fabrication processes which yield sub‐nm roughness are generally needed to reduce scattering points at the waveguide interfaces to achieve ultralow propagation loss. Here, ultralow propagation loss is shown by shaping the mode using a highly multimode structure to reduce its overlap with the waveguide interfaces, thus relaxing the fabrication processing requirements. Microresonators with intrinsic quality factors (Q) of 31.8 ± 4.4 million are experimentally demonstrated. Although the microresonators support ten transverse modes only the fundamental mode is excited and no higher order modes are observed when using nonlinear adiabatic bends. A record‐low threshold pump power of 73 µW for parametric oscillation is measured and a broadband, almost octave spanning single‐soliton frequency comb without any signatures of higher order modes in the spectrum spanning from 1097 to 2040 nm (126 THz) is generated in the multimode microresonator. This work provides a design method that can be applied to different material platforms to achieve and use ultrahigh‐Qmultimode microresonators. 
    more » « less