skip to main content

Search for: All records

Creators/Authors contains: "David, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present room-temperature measurements of magnon spin diffusion in epitaxial ferrimagnetic insulator MgAl 0.5 Fe 1.5 O 4 (MAFO) thin films near zero applied magnetic field where the sample forms a multi-domain state. Due to a weak uniaxial magnetic anisotropy, the domains are separated primarily by 180° domain walls. We find, surprisingly, that the presence of the domain walls has very little effect on the spin diffusion – nonlocal spin transport signals in the multi-domain state retain at least 95% of the maximum signal strength measured for the spatially-uniform magnetic state, over distances at least five times the typical domain size. This result is in conflict with simple models of interactions between magnons and static domain walls, which predict that the spin polarization carried by the magnons reverses upon passage through a 180° domain wall.
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available April 27, 2024
  3. Free, publicly-accessible full text available April 11, 2024
  4. Free, publicly-accessible full text available March 1, 2024
  5. Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; P total = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.
    Free, publicly-accessible full text available May 9, 2024
  6. Abstract

    The breathing motions of proteins are thought to play a critical role in function. However, current techniques to study key collective motions are limited to spectroscopy and computation. We present a high-resolution experimental approach based on the total scattering from protein crystals at room temperature (TS/RT-MX) that captures both structure and collective motions. To reveal the scattering signal from protein motions, we present a general workflow that enables robust subtraction of lattice disorder. The workflow introduces two methods: GOODVIBES, a detailed and refinable lattice disorder model based on the rigid-body vibrations of a crystalline elastic network; and DISCOBALL, an independent method of validation that estimates the displacement covariance between proteins in the lattice in real space. Here, we demonstrate the robustness of this workflow and further demonstrate how it can be interfaced with MD simulations towards obtaining high-resolution insight into functionally important protein motions.

  7. Free, publicly-accessible full text available March 1, 2024
  8. Abstract

    Most processing of the human diet occurs in the small intestine. Metabolites in the small intestine originate from host secretions, plus the ingested exposome1and microbial transformations. Here we probe the spatiotemporal variation of upper intestinal luminal contents during routine daily digestion in 15 healthy male and female participants. For this, we use a non-invasive, ingestible sampling device to collect and analyse 274 intestinal samples and 60 corresponding stool homogenates by combining five mass spectrometry assays2,3and 16S rRNA sequencing. We identify 1,909 metabolites, including sulfonolipids and fatty acid esters of hydroxy fatty acids (FAHFA) lipids. We observe that stool and intestinal metabolomes differ dramatically. Food metabolites display trends in dietary biomarkers, unexpected increases in dicarboxylic acids along the intestinal tract and a positive association between luminal keto acids and fruit intake. Diet-derived and microbially linked metabolites account for the largest inter-individual differences. Notably, two individuals who had taken antibiotics within 6 months before sampling show large variation in levels of bioactive FAHFAs and sulfonolipids and other microbially related metabolites. From inter-individual variation, we identifyBlautiaspecies as a candidate to be involved in FAHFA metabolism. In conclusion, non-invasive, in vivo sampling of the human small intestine and ascending colon under physiological conditionsmore »reveals links between diet, host and microbial metabolism.

    « less
  9. Survival probability measures the probability that a system taken out of equilibrium has not yet transitioned from its initial state. Inspired by the generalized entropies used to analyze nonergodic states, we introduce a generalized version of the survival probability and discuss how it can assist in studies of the structure of eigenstates and ergodicity.
    Free, publicly-accessible full text available February 1, 2024
  10. Few fires are known to have burned the tundra of the Arctic Slope north of the Brooks Range in Alaska, USA. A total of 90 fires between 1969 and 2022 are known. Because fire has been rare, old burns can be detected by the traces of thermokarst and distinct vegetation they leave in otherwise uniform tundra, which are visible in aerial photograph archives. Several prehistoric tundra burns have been found in this way. Detection of tundra fires in this sparsely populated and remote area has been historically inconsistent and opportunistic, relying on reports by aircraft pilots. Fire reports have been logged into an administrative database which, out of necessity, has been used to scientifically evaluate changes in the fire regime. To improve the consistency of the record, we completed a systematic search of Landsat Collection 2 for the Brooks Range Foothills ecoregion over the period 1972–2022. We found 57 unrecorded tundra burns, about 41% of the total, which now numbers 138. Only 15% and 33% of all fires appear in MODIS and VIIRS satellite-borne thermal anomaly products, respectively. The fire frequency in the first 37 years of the record is 0.89 y−1 for natural ignitions that spread ≥10 ha. Frequencymore »in the last 13 years is 2.5 y−1, indicating a nearly three-fold increase in fire frequency.« less
    Free, publicly-accessible full text available March 1, 2024