skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "David, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    National parks and other protected areas are important for preserving landscapes and biodiversity worldwide. An essential component of the mission of the United States (U.S.) National Park Service (NPS) requires understanding and maintaining accurate inventories of species on protected lands. We describe a new, national-scale synthesis of amphibian species occurrence in the NPS system. Many park units have a list of amphibian species observed within their borders compiled from various sources and available publicly through the NPSpecies platform. However, many of the observations in NPSpecies remain unverified and the lists are often outdated. We updated the amphibian dataset for each park unit by collating old and new park-level records and had them verified by regional experts. The new dataset contains occurrence records for 292 of the 424 NPS units and includes updated taxonomy, international and state conservation rankings, hyperlinks to a supporting reference for each record, specific notes, and related fields which can be used to better understand and manage amphibian biodiversity within a single park or group of parks.

    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Integrating phase-change materials in metasurfaces has emerged as a powerful strategy to realize optical devices with tunable electromagnetic responses. Here, phase-change chiral metasurfaces based on GST-225 material with the designed trapezoid-shaped resonators are demonstrated to achieve tunable circular dichroism (CD) responses in the infrared regime. The asymmetric trapezoid-shaped resonators are designed to support two chiral plasmonic resonances with opposite CD responses for realizing switchable CD between negative and positive values using the GST phase change from amorphous to crystalline. The electromagnetic field distributions of the chiral plasmonic resonant modes are analyzed to understand the chiroptical responses of the metasurface. Furthermore, the variations in the absorption spectrum and CD value for the metasurface as a function of the baking time during the GST phase transition are analyzed to reveal the underlying thermal tuning process of the metasurface. The demonstrated phase-change metasurfaces with tunable CD responses hold significant promise in enabling many applications in the infrared regime such as chiral sensing, encrypted communication, and thermal imaging.

    more » « less
  3. Abstract

    Lake George (LG) is a temperate, oligotrophic, medium-sized lake (114 km2) located in northeastern New York State (U.S.). Lakes are highly understudied environments where extensive dissolved organic matter (DOM) processing occurs. With this study we establish the foundation for researching the organic biogeochemistry of the LG watershed, in particular, the numerous tributaries flowing into the lake. Collected were 213 samples from 64 tributaries and 12 lake locations. Some of the tributaries had unique wastewater, agricultural, or wetland influences. We employed fluorescence spectroscopy, a common biogeochemical technique, to characterize the fluorescent DOM (FDOM) component. We developed a parallel factor analysis (PARAFAC) model for the deconvolution of FDOM data allowing to depict six underlying FDOM constituents, which varied in source and biogeochemical reactivity on spatiotemporal scales. Tributary DOM, in comparison to lake DOM, was much more aromatic, of larger molecular weight, more humic, and contained less protein-like material. The distribution of humic and protein-like PARAFAC components was impacted by land-use and wastewater influences. Supporting characterization of the chromophoric DOM (CDOM) and total DOM (on dissolved organic carbon basis) allowed differentiating the influence of wetlands, which could not be depicted by spatiotemporally assessing the variability of PARAFAC components. Temporal assessment revealed minor variabilities in tributary DOM quantity and quality except in cases of point sources such as wastewater treatment facilities. Overall, this primer study establishes baseline understanding of the baseflow levels of DOM constituents in the LG watershed, and more broadly, presents a PARAFAC model for the deconvolution of fluorescence spectra of DOM from temperate and oligotrophic lake watersheds such as LG.

    more » « less
  4. Free, publicly-accessible full text available April 1, 2025
  5. The asymptotic symmetry group of general relativity in asymptotically flat spacetimes can be extended from the Bondi-Metzner-Sachs (BMS) group to the generalized BMS (GMBS) group suggested by Campiglia and Laddha, which includes arbitrary diffeomorphisms of the celestial two-sphere. It can be further extended to the Weyl BMS (BMSW) group suggested by Freidel, Oliveri, Pranzetti and Speziale, which includes general conformal transformations. We compute the action of fully nonlinear BMSW transformations on the leading order Bondi-gauge metric functions: specifically, the induced metric, Bondi mass aspect, angular momentum aspect, and shear. These results generalize previous linearized results in the BMSW context by Freidel et al., and also nonlinear results in the BMS context by Chen, Wang, Wang and Yau. The transformation laws will be useful for exploring implications of the BMSW group. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  6. Abstract

    The use of antibiotics to treat bacterial infections often imposes strong selection for antibiotic resistance. However, the prevalence of antibiotic resistance varies greatly across different combinations of pathogens and drugs. What underlies this variation? Systematic reviews, meta-analyses, and literature surveys capable of integrating data across many studies have tried to answer this question, but the vast majority of these studies have focused only on cases where resistance is common or problematic. Yet much could presumably be learned from the cases where resistance is infrequent or absent. Here we conducted a literature survey and a systematic review to study the evolution of antibiotic resistance across a wide range of pathogen-by-drug combinations (57 pathogens and 53 antibiotics from 15 drug classes). Using Akaike information criterion-based model selection and model-averaged parameter estimation we explored 14 different factors posited to be associated with resistance evolution. We find that the most robust predictors of high resistance are nosocomial transmission (i.e., hospital-acquired pathogens) and indirect transmission (e.g., vector-, water-, air-, or vehicle-borne pathogens). While the former was to be expected based on prior studies, the positive correlation between high resistance frequencies and indirect transmission is, to our knowledge, a novel insight. The most robust predictor of low resistance is zoonosis from wild animal reservoirs. We also found partial support that resistance was associated with pathogen type, horizontal gene transfer, commensalism, and human-to-human transmission. We did not find support for correlations between resistance and environmental reservoirs, mechanisms of drug action, and global drug use. This work explores the relative explanatory power of various pathogen and drug factors on resistance evolution, which is necessary to identify priority targets of stewardship efforts to slow the spread of drug-resistant pathogens.

    more » « less
  7. Abstract

    Human mesenchymal stromal cell (hMSC) manufacturing requires the production of large numbers of therapeutically potent cells. Licensing with soluble cytokines improves hMSC therapeutic potency by enhancing secretion of immunoactive factors but typically decreases proliferative ability. Soft hydrogels, however, have shown promise for boosting immunomodulatory potential, which may compensate for decreased proliferation. Here, hydrogels are cross‐linked with peptoids of different secondary structures to generate substrates of various bulk stiffnesses but fixed network connectivity. Secretions of interleukin 6, monocyte chemoattractive protein‐1, macrophage colony‐stimulating factor, and vascular endothelial growth factor are shown to depend on hydrogel stiffness in the presence of interferon gamma (IFN‐γ) supplementation, with soft substrates further improving secretion. The immunological function of these secreted cytokines is then investigated via coculture of hMSCs seeded on hydrogels with primary peripheral blood mononuclear cells (PBMCs) in the presence and absence of IFN‐γ. Cocultures with hMSCs seeded on softer hydrogels show decreased PBMC proliferation with IFN‐γ. To probe possible signaling pathways, immunofluorescent studies probe the nuclear factor kappa B pathway and demonstrate that IFN‐γ supplementation and softer hydrogel mechanics lead to higher activation of this pathway. Overall, these studies may allow for production of more efficacious therapeutic hMSCs in the presence of IFN‐γ.

    more » « less
    Free, publicly-accessible full text available April 18, 2025
  8. Free, publicly-accessible full text available March 6, 2025
  9. Abstract

    The contrasting internal luminosity of Uranus and Neptune present a challenge to our understanding of the origin and evolution of these bodies, as well as extra-solar ice giants. The thermal evolution of Neptune is known to be nearly consistent with an entirely fluid interior, but this is not a unique solution, and does not account for the tidal dissipation required by the migration of its moons. We examine a model that has been previously shown to explain the thermal and tidal evolution of Uranus: one that features a growing, frozen core. The core traps heat in the interior, affecting the cooling time scale, and provides a source of tidal dissipation. We review the growing, frozen core model, and the computation of thermal and tidal evolution. We then apply this model to Neptune. We find that the growing frozen core model can account for the observed internal luminosity of Neptune and the migration of its moons, in the form of resonances that were either encountered or avoided in the past. We discuss prospects for observational tests of the growing frozen core model and possible implications for understanding the gas giants.

    more » « less
  10. Abstract

    Computing excited-state properties of molecules and solids is considered one of the most important near-term applications of quantum computers. While many of the current excited-state quantum algorithms differ in circuit architecture, specific exploitation of quantum advantage, or result quality, one common feature is their rooting in the Schrödinger equation. However, through contracting (or projecting) the eigenvalue equation, more efficient strategies can be designed for near-term quantum devices. Here we demonstrate that when combined with the Rayleigh–Ritz variational principle for mixed quantum states, the ground-state contracted quantum eigensolver (CQE) can be generalized to compute any number of quantum eigenstates simultaneously. We introduce twoexcited-state(anti-Hermitian) CQEs that perform the excited-state calculation while inheriting many of the remarkable features of the original ground-state version of the algorithm, such as its scalability. To showcase our approach, we study several model and chemical Hamiltonians and investigate the performance of different implementations.

    more » « less