skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "David, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2025
  2. This article presents the first use of shape forming elements (SFEs) to produce architected composites from multiple materials in an extrusion process. Each SFE contains a matrix of flow channels connecting input and output ports, where materials are routed between corresponding ports. The mathematical operations of rotation and shifting are described, and design automation is explored using Bayesian optimization and genetic algorithms to select fifty or more parameters for minimizing two objective functions. The first objective aims to match a target cross-section by minimizing the pixel-by-pixel error, which is weighted with the structural similarity index (SSIM). The second objective seeks to maximize information content by minimizing the SSIM relative to a white image. Satisfactory designs are achieved with better objective function values observed in rectangular rather than square flow channels. Validation extrusion of modeling clay demonstrates that while SFEs impose complex material transformations, they do not achieve the material distributions predicted by the digital model. Using the SSIM for results comparison, initial stages yielded SSIM values near 0.8 between design and simulation, indicating a good initial match. However, the control of material processing tended to decline with successive SFE processing with the SSIM of the extruded output dropping to 0.023 relative to the design intent. Flow simulations more closely replicated the observed structures with SSIM values around 0.4 but also failed to predict the intended cross-sections. The evaluation highlights the need for advanced modeling techniques to enhance the predictive accuracy and functionality of SFEs for biomedical, energy storage, and structural applications.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract

    The replacement of grasses by shrubs or bare ground (xerification) is a primary form of landscape change in drylands globally with consequences for ecosystem services. The potential for wild herbivores to trigger or reinforce shrubland states may be underappreciated, however, and comparative analyses across herbivore taxa are sparse. We sought to clarify the relative effects of domestic cattle, native rodents, native lagomorphs, and exotic African oryx (Oryx gazella) on a Chihuahuan Desert grassland undergoing shrub encroachment. We then asked whether drought periods, wet season precipitation, or interspecific grass–shrub competition modified herbivore effects to alter plant cover, species diversity, or community composition. We established a long‐term experiment with hierarchical herbivore exclosure treatments and surveyed plant foliar cover over 25 years. Cover of honey mesquite (Prosopis glandulosa) proliferated, responding primarily to climate, and was unaffected by herbivore treatments. Surprisingly, cattle and African oryx exclusion had only marginal effects on perennial grass cover at their current densities. Native lagomorphs interacted with climate to limit perennial grass cover during wet periods. Native rodents strongly decreased plant diversity, decreased evenness, and altered community composition. Overall, we found no evidence of mammalian herbivores facilitating or inhibiting shrub encroachment, but native small mammals interacting with climate drove dynamics of herbaceous plant communities. Ongoing monitoring will determine whether increased perennial grass cover from exclusion of native lagomorphs and rodents slows the transition to a dense shrubland.

     
    more » « less
    Free, publicly-accessible full text available October 29, 2025
  4. Free, publicly-accessible full text available October 11, 2025
  5. Free, publicly-accessible full text available August 1, 2025
  6. The transfer of lanthanide–ligand complexes across aqueous–organic interfaces was studied with rare event molecular dynamics simulations. Relative solubilities were quantified from potentials of mean force.

     
    more » « less
    Free, publicly-accessible full text available August 14, 2025
  7. Abstract Highlights

    Two industrial recycled polypropylene materials having similar melt flow rates exhibit drastically different cast film processing behaviors.

    DSC and FTIR provide reasonable approaches for identifying constituent materials.

    Modeling of the melt viscosities characterized by capillary and parallel plate rheology suggests that viscosity variations relative to the power‐law behavior assumed in the coat hanger die design is a predominant driver of cast film instabilities.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  8. Free, publicly-accessible full text available August 13, 2025
  9. Free, publicly-accessible full text available August 1, 2025
  10. Abstract

    Kagome vanadatesAV3Sb5display unusual low-temperature electronic properties including charge density waves (CDW), whose microscopic origin remains unsettled. Recently, CDW order has been discovered in a new material ScV6Sn6, providing an opportunity to explore whether the onset of CDW leads to unusual electronic properties. Here, we study this question using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The ARPES measurements show minimal changes to the electronic structure after the onset of CDW. However, STM quasiparticle interference (QPI) measurements show strong dispersing features related to the CDW ordering vectors. A plausible explanation is the presence of a strong momentum-dependent scattering potential peaked at the CDW wavevector, associated with the existence of competing CDW instabilities. Our STM results further indicate that the bands most affected by the CDW are near vHS, analogous to the case ofAV3Sb5despite very different CDW wavevectors.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025