Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reproducible environmental modelling often relies on spatial datasets as inputs, typically manually subset for specific areas. Yet, models can benefit from a data distribution approach facilitated by online repositories, and automating processes to foster reproducibility. This study introduces a method leveraging diverse state-scale spatial datasets to create cohesive packages for GIS-based environmental modelling. These datasets were generated and shared via GeoServer and THREDDS Data Server Connected to HydroShare, contrasting with conventional distribution methods. Using the Regional Hydro-Ecologic Simulation System (RHESSys) across three U.S. catchment-scale watersheds, we demonstrate minimal errors in spatial inputs and model streamflow outputs compared to traditional approaches. This spatial data-sharing method facilitates consistent model creation, fostering reproducibility. Its broader impact allows scientists to tailor the method to various use cases, such as exploring different scales beyond state-scale or applying it to other online repositories using existing data distribution systems, eliminating the need to develop their own.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available October 7, 2025
-
Navarro, Ramón ; Jedamzik, Ralf (Ed.)Free, publicly-accessible full text available August 26, 2025
-
Mooney, Scott David (Ed.)Fire is a key disturbance process that shapes the structure and function of montane temperate rainforest in the Pacific Northwest (PNW). Recent research is revealing more frequent historical fire activity in the western central Cascades than expected by conventional theory. Indigenous peoples have lived in the PNW for millennia. However, Indigenous people's roles in shaping vegetation mosaics in montane temperate forests of the PNW has been overlooked, despite archaeological evidence of long-term, continuous human use of these landscapes. In this paper, we present a generalizable research framework for overcoming biases often inherent in historical fire research. The framework centers Indigenous perspectives and ethnohistory, leveraging theory in human ecology and archaeology to interpret fire histories. We apply this framework to place-based, empirical evidence of Indigenous land use and dendroecological fire history. Our framework leads us to conclude that the most parsimonious explanation for the occurrence of historical high fire frequency in the western Cascades is Indigenous fire stewardship. Further, our case study makes apparent that scholars can no longer ignore the role of Indigenous people in driving montane forest dynamics in the PNW.more » « lessFree, publicly-accessible full text available June 26, 2025
-
Abstract Features of landscape morphology—including slope, curvature, and drainage dissection—are important controls on runoff generation in upland landscapes. Over long timescales, runoff plays an essential role in shaping these same features through surface erosion. This feedback between erosion and runoff generation suggests that modeling long‐term landscape evolution together with dynamic runoff generation could provide insight into hydrological function. Here we examine the emergence of variable source area runoff generation in a new coupled hydro‐geomorphic model that accounts for water balance partitioning between surface flow, subsurface flow, and evapotranspiration as landscapes evolve over millions of years. We derive a minimal set of dimensionless numbers that provide insight into how hydrologic and geomorphic parameters together affect landscapes. Across the parameter space we investigated, model results collapsed to a single inverse relationship between the dimensionless relief and the ratio of catchment quickflow to discharge. Furthermore, we found an inverse relationship between the Hillslope number, which describes topographic relief relative to aquifer thickness, and the proportion of the landscape that was variably saturated. While the model generally produces fluvial topography visually similar to simpler landscape evolution models, certain parameter combinations produce wide valley bottom wetlands and non‐dendritic, trellis‐like drainage networks, which may reflect real conditions in some landscapes where aquifer gradients become decoupled from topography. With these results, we demonstrate the power of hydro‐geomorphic models for generating new insights into hydrological processes, and also suggest that subsurface hydrology may be integral for modeling aspects of long‐term landscape evolution.
Free, publicly-accessible full text available June 1, 2025 -
Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll
a (chla ), is an indicator of ecosystem quality. We analyzed temporal trends in chla from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chla concentrations (1968 to 2019). A long-term chla decrease was observed with an average decline in the cumulative annual chla concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chla concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter–spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade−1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.Free, publicly-accessible full text available May 21, 2025 -
Acoustic trapping uses forces exerted by sound waves to transport small objects along specified trajectories in three dimensions. The structure of the time-averaged acoustic force landscape acting on an object is determined by the amplitude and phase profiles of the sound's pressure wave. These profiles typically are sculpted by deliberately selecting the amplitude and relative phase of the sound projected by each transducer in large arrays of transducers, all operating at the same carrier frequency. This approach leverages a powerful analogy with holographic optical trapping at the cost of considerable technical complexity. Acoustic force fields also can be shaped by the spectral content of the component sound waves in a manner that is not feasible with light. The same theoretical framework that predicts the time-averaged structure of monotone acoustic force landscapes can be applied to spectrally rich sound fields in the quasistatic approximation, creating opportunities for dexterous control using comparatively simple hardware. We demonstrate this approach to spectral holographic acoustic trapping by projecting acoustic conveyor beams that move millimeter-scale objects along prescribed paths. Spectral control of reflections provides yet another opportunity for controlling the structure and dynamics of an acoustic force landscape. We use this approach to realize two variations on the theme of a wave-driven oscillator, a deceptively simple dynamical system with surprisingly complex phenomenology.more » « lessFree, publicly-accessible full text available April 1, 2025