skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "David, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Holographic particle characterization treats holographic microscopy of colloidal particles as an inverse problem whose solution yields the diameter, refractive index and three-dimensional position of each particle in the field of view, all with exquisite precision. This rich source of information on the composition and dynamics of colloidal dispersions has created new opportunities for fundamental research in soft-matter physics, statistical physics and physical chemistry, and has been adopted for product development, quality assurance and process control in industrial applications. Aberrations introduced by real-world imaging conditions, however, can degrade performance by causing systematic and correlated errors in the estimated parameters. We identify a previously overlooked source of spherical aberration as a significant source of these errors. Modeling aberration-induced distortions with an operator-based formalism identifies a spatially varying phase factor that approximately compensates for spherical aberration in recorded holograms. Measurements on model colloidal dispersions demonstrate that phase-only aberration compensation greatly improves the accuracy of holographic particle characterization without significantly affecting measurement speed for high-throughput applications.

     
    more » « less
  2. In this paper, we present an efficient strategy to enumerate the number of k-cycles, g≤k<2g, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using its polynomial parity-check matrix H. This strategy works for both (dv,dc)-regular and irregular QC-LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be used to describe walks of length m in the protograph and can therefore be sufficiently described by the matrices Bm(H)(HHT)m/2H(m2), where m≥0. We provide formulas for the number of k-cycles, Nk, by just taking into account repetitions in some multisets constructed from the matrices Bm(H). This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the 3×nv fully-connected protograph, the complexity of determining Nk, for k=4,6,8,10 and 12, is O(nv2log(N)), O(nv2log(nv)log(N)), O(nv4log4(nv)log(N)), O(nv4log(nv)log(N)) and O(nv6log6(nv)log(N)), respectively. The complexity, depending logarithmically on the lifting factor N, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes. 
    more » « less
    Free, publicly-accessible full text available September 14, 2024
  3. In this paper, we investigate the problem of decoder error propagation for spatially coupled low-density parity-check (SC-LDPC) codes with sliding window decoding (SWD). This problem typically manifests itself at signal-to-noise ratios (SNRs) close to capacity under low-latency operating conditions. In this case, infrequent but severe decoder error propagation can sometimes occur. To help understand the error propagation problem in SWD of SC-LDPC codes, a multi-state Markov model is developed to describe decoder behavior and to analyze the error performance of spatially coupled LDPC codes under these conditions. We then present two approaches -check node (CN) doping and variable node (VN) doping -to combating decoder error propagation and improving decoder performance. Next we describe how the performance can be further improved by employing an adaptive approach that depends on the availability of a noiseless binary feedback channel. To illustrate the effectiveness of the doping techniques, we analyze the error performance of CN doping and VN doping using the multi-state decoder model. We then present computer simulation results showing that CN and VN doping significantly improve the performance in the operating range of interest at a cost of a small rate loss and that adaptive doping further improves the performance. We also show that the rate loss is always less than that resulting from encoder termination and can be further reduced by doping only a fraction of the VNs at each doping position in the code graph with only a minor impact on performance. Finally, we show how the encoding problem for VN doping can be greatly simplified by doping only systematic bits, with little or no performance loss. 
    more » « less
    Free, publicly-accessible full text available September 7, 2024
  4. Alysson Roncally Silva Carvalho (Ed.)

    Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn’s cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  5. Free, publicly-accessible full text available August 9, 2024
  6. Recent evidence suggests that film cooling flows with engine realistic mainstream Mach number have declined performance in comparison to those with conventional low-speed laboratory conditions. Consideration and understanding of these effects are fundamental to improving film cooling research. The proposed computational study investigates the film cooling performance of a 7-7-7 shaped film cooling hole with respect to varying mainstream Mach number, with constant Reynolds number. The cases studied include mainstream Mach numbers from 0.15–0.75, with a fixed, engine realistic, hole Reynolds number of Red = 10, 100. Significant results are then evaluated against varying stagnation temperature ratio and blowing ratio. The results showed that at a blowing ratio of 1.75, the adiabatic effectiveness declines significantly with high mainstream Mach number. The decreased performance is due to supersonic flows and shocks in the film cooling hole that disrupt flow in the diffuser section of the hole. These characteristics are observed across all stagnation temperature ratios considered. In addition to these insights, the study discusses the importance of proper thermal scaling and definition of adiabatic effectiveness when operating at high mainstream Mach number. It is demonstrated that the effects of high-speed flow challenge the efficacy of the conventional parameters used to characterize film cooling performance.

     
    more » « less
    Free, publicly-accessible full text available June 26, 2024
  7. In this paper, we present an efficient strategy to enumerate the number of k-cycles, g ≤ k < +2g, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using its polynomial parity-check matrix H. This strategy works for both (n c , n v )-regular and irregular QC-LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be used to describe walks of length m in the protograph and can therefore be sufficiently described by the matrices Bm(H)≜(HH⊤)⌊m/2⌋H(mmod2), where m ≥ 0. For example, in the case of QC-LDPC codes based on the 3 × n v fully-connected protograph, the complexity of determining the number of k-cycles, Nk, for k = 4, 6 and 8, is O(n2vlog(N)), O(n2vlog(nv)log(N)) and O(n4vlog4(nv)log(N)), respectively. The complexity, depending logarithmically on the lifting factor N, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes. 
    more » « less
    Free, publicly-accessible full text available June 25, 2024
  8. Free, publicly-accessible full text available June 30, 2024