Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study the $\ell_p$ regression problem, which requires finding $\mathbf{x}\in\mathbb R^{d}$ that minimizes $\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_p$ for a matrix $\mathbf{A}\in\mathbb R^{n \times d}$ and response vector $\mathbf{b}\in\mathbb R^{n}$. There has been recent interest in developing subsampling methods for this problem that can outperform standard techniques when $n$ is very large. However, all known subsampling approaches have run time that depends exponentially on $p$, typically, $d^{\mathcal{O}(p)}$, which can be prohibitively expensive. We improve on this work by showing that for a large class of common \emph{structured matrices}, such as combinations of low-rank matrices, sparse matrices, and Vandermonde matrices, there are subsampling based methodsmore »Free, publicly-accessible full text available April 25, 2023
-
Free, publicly-accessible full text available February 1, 2023
-
Ferroelectric nanomaterials offer the promise of switchable electronic properties at the surface, with implications for photo- and electrocatalysis. Studies to date on the effect of ferroelectric surfaces in electrocatalysis have been primarily limited to nanoparticle systems where complex interfaces arise. Here, we use MBE-grown epitaxial BaTiO3 thin films with atomically sharp interfaces as model surfaces to demonstrate the effect of ferroelectric polarization on the electronic structure, intermediate binding energy, and electrochemical activity toward the hydrogen evolution reaction (HER). Surface spectroscopy and ab initio DFT +U calculations of the well-defined (001) surfaces indicate that an upward polarized surface reduces the workmore »Free, publicly-accessible full text available May 2, 2023
-
Extreme heat events induced by climate change present a growing risk to transit passenger comfort and health. To reduce exposure, agencies may consider changes to schedules that reduce headways on heavily trafficked bus routes serving vulnerable populations. This paper develops a schedule optimization model to minimize heat exposure and applies it to local bus services in Phoenix, Arizona, using agent-based simulation to inform travel demand and rider characteristics. Rerouting as little as 10% of a fleet is found to reduce network-wide exposure by as much as 35% when operating at maximum fleet capacity. Outcome improvements are notably characterized by diminishingmore »Free, publicly-accessible full text available February 22, 2023
-
Abstract Convergence to equilibrium of underdamped Langevin dynamics is studied under general assumptions on the potential U allowing for singularities. By modifying the direct approach to convergence in L 2 pioneered by Hérau and developed by Dolbeault et al , we show that the dynamics converges exponentially fast to equilibrium in the topologies L 2 (d μ ) and L 2 ( W * d μ ), where μ denotes the invariant probability measure and W * is a suitable Lyapunov weight. In both norms, we make precise how the exponential convergence rate depends on the friction parameter γ in Langevin dynamics,more »Free, publicly-accessible full text available December 29, 2022
-
Earis, Philip (Ed.)Perovskite photovoltaics (PVs) are under intensive development for promise in terrestrial energy production. Soon, the community will find out how much of that promise may become reality. Perovskites also open new opportunities for lower cost space power. However, radiation tolerance of space environments requires appropriate analysis of relevant devices irradiated under representative radiation conditions. We present guidelines designed to rigorously test the radiation tolerance of perovskite PVs. We review radiation conditions in common orbits, calculate nonionizing and ionizing energy losses (NIEL and IEL) for perovskites, and prioritize proton radiation for effective nuclear interactions. Low-energy protons (0.05–0.15 MeV) create a representativemore »Free, publicly-accessible full text available May 18, 2023
-
Free, publicly-accessible full text available December 1, 2022
-
Free, publicly-accessible full text available March 1, 2023
-
We study stability of solutions for a randomly driven and degenerately damped version of the Lorenz ’63 model. Specifically, we prove that when damping is absent in one of the temperature components, the system possesses a unique invariant probability measure if and only if noise acts on the convection variable. On the other hand, if there is a positive growth term on the vertical temperature profile, we prove that there is no normalizable invariant state. Our approach relies on the derivation and analysis of nontrivial Lyapunov functions which ensure positive recurrence or null-recurrence/transience of the dynamics.Free, publicly-accessible full text available December 1, 2022
-
Free, publicly-accessible full text available September 23, 2022