The variations in Ly
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract α forest opacity observed atz > 5.3 between lines of sight to different background quasars are too strong to be caused by fluctuations in the density field alone. The leading hypothesis for the cause of this excess variance is a late, ongoing reionization process at redshifts below six. Another model proposes strong ionizing background fluctuations coupled to a short, spatially varying mean free path of ionizing photons, without explicitly invoking incomplete reionization. With recent observations suggesting a short mean free path atz ∼ 6, and a dramatic improvement inz > 5 Lyα forest data quality, we revisit this latter possibility. Here, we apply the likelihood-free inference technique of approximate Bayesian computation (ABC) to jointly constrain the hydrogen photoionization rate ΓHIand the mean free path of ionizing photonsλ mfpfrom the effective optical depth distributions atz = 5.0–6.1 from XQR-30. We find that the observations are well-described by fluctuating mean free path models with average mean free paths that are consistent with the steep trend implied by independent measurements atz ∼ 5–6, with a concomitant rapid evolution of the photoionization rate.Free, publicly-accessible full text available April 1, 2025 -
Abstract Observed scatter in the Ly
α opacity of quasar sightlines atz < 6 has motivated measurements of the correlation between Lyα opacity and galaxy density, as models that predict this scatter make strong and sometimes opposite predictions for how they should be related. Our previous work associated two highly opaque Lyα troughs atz ∼ 5.7 with a deficit of Lyα emitting galaxies (LAEs). In this work, we survey two of the most highly transmissive lines of sight at this redshift toward thez = 6.02 quasar SDSS J1306+0356 and thez = 6.17 quasar PSO J359-06. We find that both fields are underdense in LAEs within 10h −1Mpc of the quasar sightline, somewhat less extensive than underdensities associated with Lyα troughs. We combine our observations with three additional fields from the literature and find that while fields with extreme opacities are generally underdense, moderate opacities span a wider density range. The results at high opacities are consistent with models that invoke UV background fluctuations and/or late reionization to explain the observed scatter in intergalactic medium (IGM) Lyα opacities. There is tension at low opacities, however, as the models tend to associate lower IGM Lyα opacities with higher densities. Although the number of fields surveyed is still small, the low-opacity results may support a scenario in which the ionizing background in low-density regions increases more rapidly than some models suggest after becoming ionized. Elevated gas temperatures from recent reionization may also be making these regions more transparent. -
ABSTRACT Fluctuations in Lyman-α (Ly α) forest transmission towards high-z quasars are partially sourced from spatial fluctuations in the ultraviolet background, the level of which are set by the mean free path of ionizing photons (λmfp). The autocorrelation function of Ly α forest flux characterizes the strength and scale of transmission fluctuations and, as we show, is thus sensitive to λmfp. Recent measurements at z ∼ 6 suggest a rapid evolution of λmfp at z > 5.0 which would leave a signature in the evolution of the autocorrelation function. For this forecast, we model mock Ly α forest data with properties similar to the XQR-30 extended data set at 5.4 ≤ z ≤ 6.0. At each z, we investigate 100 mock data sets and an ideal case where mock data matches model values of the autocorrelation function. For ideal data with λmfp = 9.0 cMpc at z = 6.0, we recover $\lambda _{\text{mfp}}=12^{+6}_{-3}$ cMpc. This precision is comparable to direct measurements of λmfp from the stacking of quasar spectra beyond the Lyman limit. Hypothetical high-resolution data leads to a $\sim 40~{{\ \rm per\ cent}}$ reduction in the error bars over all z. The distribution of mock values of the autocorrelation function in this work is highly non-Gaussian for high-z, which should caution work with other statistics of the high-z Ly α forest against making this assumption. We use a rigorous statistical method to pass an inference test, however future work on non-Gaussian methods will enable higher precision measurements.
-
Abstract Protoclusters, the progenitors of galaxy clusters, trace large scale structures in the early Universe and are important to our understanding of structure formation and galaxy evolution. To date, only a handful of protoclusters have been identified in the Epoch of Reionization. As one of the rarest populations in the early Universe, distant quasars that host active supermassive black holes are thought to reside in the most massive dark matter halos at that cosmic epoch and could thus potentially pinpoint some of the earliest protoclusters. In this Letter, we report the discovery of a massive protocluster around a luminous quasar at
z = 6.63. This protocluster is anchored by the quasar and includes three [Cii ] emitters atz ∼ 6.63, 12 spectroscopically confirmed Lyα emitters (LAEs) at 6.54 <z ≤ 6.64, and a large number of narrow-band-imaging selected LAE candidates at the same redshift. This structure has an overall overdensity of within ∼35 × 74 cMpc2on the sky and an extreme overdensity ofδ > 30 in its central region (i.e.,R ≲ 2 cMpc). We estimate that this protocluster will collapse into a galaxy cluster with a mass of at the current epoch, more massive than the most massive clusters known in the local Universe such as Coma. In the quasar vicinity, we discover a double-peaked LAE, which implies that the quasar has a UV lifetime greater than 0.8 Myrs and has already ionized its surrounding intergalactic medium. -
ABSTRACT Efficient and accurate simulations of the reionization epoch are crucial to exploring the vast uncharted parameter space that will soon be constrained by measurements of the 21-cm power spectrum. One of these parameters, Rmax, is meant to characterize the absorption of photons by residual neutral gas inside of ionized regions, but has historically been implemented in a very simplistic fashion acting only as a maximum distance that ionizing photons can travel. We leverage the correspondence between excursion set methods and the integrated flux from ionizing sources to define two physically motivated prescriptions of the mean free path (MFP) of ionizing photons that smoothly attenuate the contribution from distant sources. Implementation of these methods in seminumerical reionization codes requires only modest additional computational effort due to the fact that spatial filtering is still performed on scales larger than the characteristic absorption distance. We find that our smoothly defined MFP prescriptions more effectively suppress large-scale structures in the ionization field in seminumerical reionization simulations compared to the standard Rmax approach, and the magnitude of the MFP modulates the power spectrum in a much smoother manner. We show that this suppression of large-scale power is significant enough to be relevant for upcoming 21-cm power spectrum observations. Finally, we show that in our model, the MFP plays a larger role in regulating the reionization history than in models using Rmax.
-
Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral at
z > 7 and largely ionized byz ∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz = 6–7 is poorly constrained. We present new constraints on atz ∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z < 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyα and Lyβ forests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz ∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1σ ), (1σ ), and (1σ ). The dark pixel fractions atz > 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. -
Abstract The mean free path of ionizing photons,
λ mfp, is a critical parameter for modeling the intergalactic medium (IGM) both during and after reionization. We present direct measurements ofλ mfpfrom QSO spectra over the redshift range 5 <z < 6, including the first measurements atz ≃ 5.3 and 5.6. Our sample includes data from the XQR-30 VLT large program, as well as new Keck/ESI observations of QSOs nearz ∼ 5.5, for which we also acquire new [Cii ] 158μ m redshifts with ALMA. By measuring the Lyman continuum transmission profile in stacked QSO spectra, we find , , , and pMpc atz = 5.08, 5.31, 5.65, and 5.93, respectively. Our results demonstrate thatλ mfpincreases steadily and rapidly with time over 5 <z < 6. Notably, we find thatλ mfpdeviates significantly from predictions based on a fully ionized and relaxed IGM as late asz = 5.3. By comparing our results to model predictions and indirectλ mfpconstraints based on IGM Lyα opacity, we find that the evolution ofλ mfpis consistent with scenarios wherein the IGM is still undergoing reionization and/or retains large fluctuations in the ionizing UV background well below redshift 6. -
Abstract The observed large-scale scatter in Ly α opacity of the intergalactic medium at z < 6 implies large fluctuations in the neutral hydrogen fraction that are unexpected long after reionization has ended. A number of models have emerged to explain these fluctuations that make testable predictions for the relationship between Ly α opacity and density. We present selections of z = 5.7 Ly α -emitting galaxies (LAEs) in the fields surrounding two highly opaque quasar sightlines with long Ly α troughs. The fields lie toward the z = 6.0 quasar ULAS J0148+0600, for which we reanalyze previously published results using improved photometric selection, and toward the z = 6.15 quasar SDSS J1250+3130, for which results are presented here for the first time. In both fields, we report a deficit of LAEs within 20 h −1 Mpc of the quasar. The association of highly opaque sightlines with galaxy underdensities in these two fields is consistent with models in which the scatter in Ly α opacity is driven by large-scale fluctuations in the ionizing UV background or by an ultra-late reionization that has not yet concluded at z = 5.7.more » « less
-
Abstract We present measurements of black hole masses and Eddington ratios (
λ Edd) for a sample of 38 bright (M 1450< −24.4 mag) quasars at 5.8 ≲z ≲ 7.5, derived from Very Large Telescope/X–shooter near–IR spectroscopy of their broad Civ and Mgii emission lines. The black hole masses (on average,M BH∼ 4.6 × 109M ⊙) and accretion rates (0.1 ≲λ Edd≲ 1.0) are broadly consistent with that of similarly luminous 0.3 ≲z ≲ 2.3 quasars, but there is evidence for a mild increase in the Eddington ratio abovez ≳ 6. Combined with deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [CII ] 158μ m line from the host galaxies and VLT/MUSE investigations of the extended Lyα halos, this study provides fundamental clues to models of the formation and growth of the first massive galaxies and black holes. Compared to local scaling relations,z ≳ 5.7 black holes appear to be over-massive relative to their hosts, with accretion properties that do not change with host galaxy morphologies. Assuming that the kinematics of theT ∼ 104K gas, traced by the extended Lyα halos, are dominated by the gravitational potential of the dark matter halo, we observe a similar relation between black hole mass and circular velocity as reported forz ∼ 0 galaxies. These results paint a picture where the first supermassive black holes reside in massive halos atz ≳ 6 and lead the first stages of galaxy formation by rapidly growing in mass with a duty cycle of order unity. The duty cycle needs to drastically drop toward lower redshifts, while the host galaxies continue forming stars at a rate of hundreds of solar masses per year, sustained by the large reservoirs of cool gas surrounding them.