skip to main content


Search for: All records

Creators/Authors contains: "Davies, Huw M. L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Computational studies revealed that dirhodium tetrakis(1,2,2‐triarylcyclopropanecarboxylate) (Rh2(TPCP)4) catalysts adopt distinctive high symmetry orientations, which are dependent on the nature of the aryl substitution pattern. The parent catalyst, Rh2(TPCP)4, and those with ap‐substituent at the C1 aryl, such as Rh2(p‐BrTPCP)4and Rh2(p‐PhTPCP)4, adopt aC2‐symmetric structure. Rh2(3,5‐di(ptBuC6H4)TPCP)4, 3,5‐disubstituted at the C1 aryl, adopts aD2‐symmetric structure, whereas catalysts with ano‐substituent at the C1 aryl, such as Rh2(o‐Cl‐5‐BrTPCP)4,adopt aC4‐symmetric structure.

     
    more » « less
  2. Abstract

    Regio‐ and stereoselective distal allylic/benzylic C−H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N‐sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site‐selective functionalization of less activated allylic and benzylic C−H bonds even in the presence of electronically preferred C−H bonds located α to oxygen. The dirhodium catalyst Rh2(S‐NTTL)4is the most effective chiral catalyst for triazole‐derived carbene transformations, whereas Rh2(S‐TPPTTL)4works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ‐functionalized allyl silyl ethers with high diastereo‐ and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4‐disubstitutedl‐proline scaffold.

     
    more » « less