skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Davis, Chelsea S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the stress distribution within fiber‐reinforced polymers (FRPs) is critical to extending their operational lifespan. The integration of mechanoresponsive molecular force probes, referred to as mechanophores, presents a potential solution by enabling direct monitoring of stress concentrations. In this study, spiropyran (SP) mechanophores (MPs) are embedded within a polydimethylsiloxane (PDMS) matrix to visualize stress localization during loading within a single fiber‐reinforced framework. The SP mechanophore undergoes a transition from a non‐fluorescent state to an active state (merocyanine) through isomerization in response to mechanical forces. Using a single fiber mounted axially within the matrix, the fundamental failure modes observed in conventional fiber‐reinforced composites are replicated. Samples are strained under uniaxial tensile loading along the fiber direction and the localization of stresses is observed via MP activation. Stresses are concentrated in the matrix near the fiber region that gradually decreases away from the fiber surface. Confocal microscopy is used to visualize mechanophore activation and quantitatively assess fluorescence intensity. Finite element modeling is used to develop a calibration to quantify the stresses based on the observed fluorescence intensity. These outcomes underscore the viability of employing these mechanoresponsive molecules as a potential means to visualize real‐time stress distribution, thereby facilitating the design of high‐performance composites.

     
    more » « less
  2. Chan, Edwin P. (Ed.)

    Stress concentrations in polymer matrix composites occur due to non-uniform loadings which develop near the interface between the matrix and reinforcement in a stressed composite. Methods to better understand the evolution of this stress concentration are required for the development of advanced composites. Mechanophores, which are stress responsive molecules, can be embedded into the polymer matrix and used to quantify the local stresses in a loaded composite. In this work, single particle model composites were fabricated by combining functionalized glass particles embedded into a silicone/mechanophore matrix. Confocal microscopy was then used to measure the mechanophore activationin situduring mechanical loading. The fluorescence intensity was correlated to maximum principal stress values obtained from a finite element analysis (FEA) model of the system utilizing an Ogden hyperelastic model to represent the elastomer. By calibrating stress to fluorescence intensity spatially, quantitative stress measurements can be obtained directly from fluorescent images. To validate this technique, calibrated stress values for a two-particle composite system were compared to a FEA model and good agreement was found. Further experiments were performed on silicone matrix composites containing short cylindrical particles oriented with their major axis parallel or perpendicular to the stretching direction. To demonstrate the versatility of the single particle intensity/stress calibration approach, maximum principal stress values were mapped on the fluorescence images of the cylindrical experiments. This technique has potential to quantify stress concentrations quickly and accurately in new composite designs without the use of FEA models or differential image correlation.

     
    more » « less
  3. Control over the surface chemistry of elastomers such as polydimethylsiloxane (PDMS) is important for many applications. However, achieving nanostructured chemical control on amorphous material interfaces below the length scale of substrate heterogeneity is not straightforward, and can be particularly difficult to decouple from changes in network structure that are required for certain applications (e.g., variation of elastic modulus for cell culture). We have recently reported a new method for precisely structured surface functionalization of PDMS and other soft materials, which displays high densities of ligands directly on the material surface, maximizing steric accessibility. Here, we systematically examine structural factors in the PDMS components (e.g., base and cross-linker structures) that impact efficiency of the interfacial reaction that leads to surface functionalization. Applying this understanding, we demonstrate routes for generating equivalent nanometer-scale functional patterns on PDMS with elastic moduli from 0.013 to 1.4 MPa, establishing a foundation for use in applications such as cell culture. 
    more » « less
  4. Abstract

    Peeling of pressure‐sensitive adhesives from low modulus substrates such as human skin induces a significant out‐of‐plane deformation at the crack tip. In the context of medical adhesives, this deformation is related to the pain and injury caused to the skin and underlying tissue during removal. Here, a method is presented to measure the out‐of‐plane deformation of elastic substrates as a medical adhesive tape is removed from the surface, a necessary first step in the eventual quantification of pain. Elastic human skin analogs comprised of a simple bilayer with varied moduli across several orders of magnitude are fabricated. Next, a nonporous medical adhesive tape is peeled from these substrates and the deformation is quantified. A model derived from contact mechanics for a rectangular pressure is fit to the experimental data. By correcting for confinement effects and deformation within the adhesive, good agreement is found between the newly reported model in this study and the experimentally observed deformation.

     
    more » « less
  5.  
    more » « less