skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Davis, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite major improvements in weather and climate modelling and substantial increases in remotely sensed observations, drought prediction remains a major challenge. After a review of the existing methods, we discuss major research gaps and opportunities to improve drought prediction. We argue that current approaches are top-down, assuming that the process(es) and/or driver(s) are known—i.e. starting with a model and then imposing it on the observed events (reality). With the help of an experiment, we show that there are opportunities to develop bottom-up drought prediction models—i.e. starting from the reality (here, observed events) and searching for model(s) and driver(s) that work. Recent advances in artificial intelligence and machine learning provide significant opportunities for developing bottom-up drought forecasting models. Regardless of the type of drought forecasting model (e.g. machine learning, dynamical simulations, analogue based), we need to shift our attention to robustness of theories and outputs rather than event-based verification. A shift in our focus towards quantifying the stability of uncertainty in drought prediction models, rather than the goodness of fit or reproducing the past, could be the first step towards this goal. Finally, we highlight the advantages of hybrid dynamical and statistical models for improving current drought prediction models. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’. 
    more » « less
    Free, publicly-accessible full text available December 12, 2023
  2. Abstract

    We present multiwavelength time-series spectroscopy of SN 2013aa and SN 2017cbv, two Type Ia supernovae (SNe Ia) on the outskirts of the same host galaxy, NGC 5643. This work utilizes new nebular-phase near-infrared (NIR) spectra obtained by the Carnegie Supernova Project-II, in addition to previously published optical and NIR spectra. Using nebular-phase [Feii] lines in the optical and NIR, we examine the explosion kinematics and test the efficacy of several common emission-line-fitting techniques. The NIR [Feii] 1.644μm line provides the most robust velocity measurements against variations due to the choice of the fit method and line blending. The resulting effects on velocity measurements due to choosing different fit methods, initial fit parameters, continuum and line profile functions, and fit region boundaries were also investigated. The NIR [Feii] velocities yield the same radial shift direction as velocities measured using the optical [Feii]λ7155 line, but the sizes of the shifts are consistently and substantially lower, pointing to a potential issue in optical studies. The NIR [Feii] 1.644μm emission profile shows a lack of significant asymmetry in both SNe, and the observed low velocities elevate the importance for correcting for any velocity contribution from the host galaxy’s rotation. The low [Feii] velocities measured in the NIR at nebular phases disfavor progenitor scenarios in close double-degenerate systems for both SN 2013aa and SN 2017cbv. The time evolution of the NIR [Feii] 1.644μm line also indicates moderately high progenitor white dwarf central density and potentially high magnetic fields.

    more » « less
  3. null (Ed.)
    This paper introduces the background and establishment of the first Research Experience for Teachers (RET) Site in Arkansas, supported by the National Science Foundation. The Arkansas Data Analytics Teacher Alliance (AR-DATA) program partners with school districts in the Northwest Arkansas region to promote research-driven high school analytics curriculum and education to reach underserved students, such as those from rural areas. At least thirty 9th-12th grade mathematics, computer science, and pre-engineering teachers will participate in AR-DATA and work with faculty mentors, graduate students, curriculum coaches, and industry experts in a six-week RET Summer Program and academic-year follow up to develop and disseminate learning modules to enhance current curriculum, attain new knowledge of data analytics and engineering applications, and benefit professionally through the RET program activities. The learning modules developed will reflect current cutting-edge analytics research, as well as the development needs of next-generation analytics workforce. 
    more » « less
  4. While changing engineering departments to become more inclusive and equitable is a common goal, research repeatedly confirms that such change is rare. Notably, change efforts commonly fail in higher education institutions (Kezar 2011), and this failure is typically attributed to faculty resistance, ineffective leadership, competing values, and conservative traditions (Klempin and Karp 2018). Recent nationwide National Science Foundation-funded efforts to revolutionize engineering departments provide insight into the salience of power dynamics as drivers of or barriers to equitable, lasting change. We interviewed members of these change teams to understand the challenges they encountered and how they navigated these. Using an intersectionality framework (Collins & Bilge, 2016) we explored four lenses on power relations: (1) from a structural lens, we see that policies may affect individuals differently based on their social and role identities; (2) from a cultural lens, ideas and culture organize power, often blinding those with privilege from noticing bias; (3) from a disciplinary lens, people train and coerce each other to behave in certain ways and to sustain norms; and (4) from an interpersonal lens, we see that an individual’s social (e.g., gender, ethnicity) and role (career, position, voluntary memberships) identities can shape how they experience bias. Using these lenses, we characterized ways members positioned themselves in relation to change efforts and the degree to which they held substantive power or were endangered through their participation. In many cases, disciplinary norms revealed clashes between the original structures and cultures, and the sought-after changed structures, cultures, and disciplinary practices. For some, such clashes revealed a veneer of change progress; for others, clashes served as inflection points. We share strategies for deliberately engaging power relations in change projects. 
    more » « less
  5. Abstract We present and analyze a near-infrared (NIR) spectrum of the underluminous Type Ia supernova SN 2020qxp/ASASSN-20jq obtained with NIRES at the Keck Observatory, 191 days after B -band maximum. The spectrum is dominated by a number of broad emission features, including the [Fe ii ] at 1.644 μ m, which is highly asymmetric with a tilted top and a peak redshifted by ≈2000 km s −1 . In comparison with 2D non-LTE synthetic spectra computed from 3D simulations of off-center delayed-detonation Chandrasekhar-mass ( M ch ) white dwarf (WD) models, we find good agreement between the observed lines and the synthetic profiles, and are able to unravel the structure of the progenitor’s envelope. We find that the size and tilt of the [Fe ii ] 1.644 μ m profile (in velocity space) is an effective way to determine the location of an off-center delayed-detonation transition (DDT) and the viewing angle, and it requires a WD with a high central density of ∼4 × 10 9 g cm −3 . We also tentatively identify a stable Ni feature around 1.9 μ m characterized by a “pot-belly” profile that is slightly offset with respect to the kinematic center. In the case of SN 2020qxp/ASASSN-20jq, we estimate that the location of the DDT is ∼0.3 M WD off center, which gives rise to an asymmetric distribution of the underlying ejecta. We also demonstrate that low-luminosity and high-density WD SN Ia progenitors exhibit a very strong overlap of Ca and 56 Ni in physical space. This results in the formation of a prevalent [Ca ii ] 0.73 μ m emission feature that is sensitive to asymmetry effects. Our findings are discussed within the context of alternative scenarios, including off-center C/O detonations in He-triggered sub- M Ch WDs and the direct collision of two WDs. Snapshot programs with Gemini/Keck/Very Large Telescope (VLT)/ELT-class instruments and our spectropolarimetry program are complementary to mid-IR spectra by the James Webb Space Telescope (JWST). 
    more » « less
  6. Abstract We present 75 near-infrared (NIR; 0.8−2.5 μ m) spectra of 34 stripped-envelope core-collapse supernovae (SESNe) obtained by the Carnegie Supernova Project-II (CSP-II), encompassing optical spectroscopic Types IIb, Ib, Ic, and Ic-BL. The spectra range in phase from pre-maximum to 80 days past maximum. This unique data set constitutes the largest NIR spectroscopic sample of SESNe to date. NIR spectroscopy provides observables with additional information that is not available in the optical. Specifically, the NIR contains the strong lines of He i and allows a more detailed look at whether Type Ic supernovae are completely stripped of their outer He layer. The NIR spectra of SESNe have broad similarities, but closer examination through statistical means reveals a strong dichotomy between NIR “He-rich” and “He-poor” SNe. These NIR subgroups correspond almost perfectly to the optical IIb/Ib and Ic/Ic-BL types, respectively. The largest difference between the two groups is observed in the 2 μ m region, near the He i λ 2.0581 μ m line. The division between the two groups is not an arbitrary one along a continuous sequence. Early spectra of He-rich SESNe show much stronger He i λ 2.0581 μ m absorption compared to the He-poor group, but with a wide range of profile shapes. The same line also provides evidence for trace amounts of He in half of our SNe in the He-poor group. 
    more » « less
  7. Abstract We present a multiwavelength photometric and spectroscopic analysis of 13 super-Chandrasekhar-mass/2003fg-like Type Ia supernovae (SNe Ia). Nine of these objects were observed by the Carnegie Supernova Project. The 2003fg-like SNe have slowly declining light curves (Δ m 15 ( B ) < 1.3 mag), and peak absolute B -band magnitudes of −19 < M B < −21 mag. Many of the 2003fg-like SNe are located in the same part of the luminosity–width relation as normal SNe Ia. In the optical B and V bands, the 2003fg-like SNe look like normal SNe Ia, but at redder wavelengths they diverge. Unlike other luminous SNe Ia, the 2003fg-like SNe generally have only one i -band maximum, which peaks after the epoch of the B -band maximum, while their near-IR (NIR) light-curve rise times can be ≳40 days longer than those of normal SNe Ia. They are also at least 1 mag brighter in the NIR bands than normal SNe Ia, peaking above M H = −19 mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark-energy experiments. Spectroscopically, the 2003fg-like SNe exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000–12,000 km s −1 ) in Si ii λ 6355 velocities at maximum light with no rapid early velocity decline, and no clear H -band break at +10 days. We find that SNe with a larger pseudo-equivalent width of C ii at maximum light have lower Si ii λ 6355 velocities and more slowly declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like SNe. The explosion of a C–O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core-degenerate scenario. 
    more » « less